0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用Python从头实现一个神经网络来理解神经网络的原理4

jf_78858299 来源:机器学习杂货店 作者:机器学习杂货店 2023-02-27 15:06 次阅读

***14 ***代码:一个完整的神经网络

我们终于可以实现一个完整的神经网络了:

图片

图片

import numpy as np
defsigmoid(x):# Sigmoid activation function: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x))
defderiv_sigmoid(x): # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x)) fx = sigmoid(x) return fx * (1 - fx)
defmse_loss(y_true, y_pred): # y_true和y_pred是相同长度的numpy数组。 return ((y_true - y_pred) ** 2).mean()
classOurNeuralNetwork: ''' A neural network with: - 2 inputs - a hidden layer with 2 neurons (h1, h2) - an output layer with 1 neuron (o1)
*** 免责声明 ***: 下面的代码是为了简单和演示,而不是最佳的。 真正的神经网络代码与此完全不同。不要使用此代码。 相反,读/运行它来理解这个特定的网络是如何工作的。 ''' def__init__(self): # 权重,Weights self.w1 = np.random.normal() self.w2 = np.random.normal() self.w3 = np.random.normal() self.w4 = np.random.normal() self.w5 = np.random.normal() self.w6 = np.random.normal()
# 截距项,Biases self.b1 = np.random.normal() self.b2 = np.random.normal() self.b3 = np.random.normal()
deffeedforward(self, x): # X是一个有2个元素的数字数组。 h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1) h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2) o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3) return o1
deftrain(self, data, all_y_trues): ''' - data is a (n x 2) numpy array, n = # of samples in the dataset. - all_y_trues is a numpy array with n elements. Elements in all_y_trues correspond to those in data. ''' learn_rate = 0.1 epochs = 1000 # 遍历整个数据集的次数
for epoch in range(epochs): for x, y_true in zip(data, all_y_trues): # --- 做一个前馈(稍后我们将需要这些值) sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1 h1 = sigmoid(sum_h1)
sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2 h2 = sigmoid(sum_h2)
sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3 o1 = sigmoid(sum_o1) y_pred = o1
# --- 计算偏导数。 # --- Naming: d_L_d_w1 represents "partial L / partial w1" d_L_d_ypred = -2 * (y_true - y_pred)
# Neuron o1 d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1) d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1) d_ypred_d_b3 = deriv_sigmoid(sum_o1)
d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1) d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)
# Neuron h1 d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1) d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1) d_h1_d_b1 = deriv_sigmoid(sum_h1)
# Neuron h2 d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2) d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2) d_h2_d_b2 = deriv_sigmoid(sum_h2)
# --- 更新权重和偏差 # Neuron h1 self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1 self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2 self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1
# Neuron h2 self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3 self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4 self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2
# Neuron o1 self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5 self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6 self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3
# --- 在每次epoch结束时计算总损失 if epoch % 10 == 0: y_preds = np.apply_along_axis(self.feedforward, 1, data) loss = mse_loss(all_y_trues, y_preds) print("Epoch %d loss: %.3f" % (epoch, loss))
# 定义数据集data = np.array([ [-2, -1], # Alice [25, 6], # Bob [17, 4], # Charlie [-15, -6], # Diana])all_y_trues = np.array([ 1, # Alice 0, # Bob 0, # Charlie 1, # Diana])
# 训练我们的神经网络!network = OurNeuralNetwork()network.train(data, all_y_trues)
随着网络的学习,损失在稳步下降。

图片

现在我们可以用这个网络来预测性别了:

# 做一些预测emily = np.array([-7, -3]) # 128 磅, 63 英寸frank = np.array([20, 2])  # 155 磅, 68 英寸print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - Fprint("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M

*15 ***** 接下来?

搞定了一个简单的神经网络,快速回顾一下:

  • 介绍了神经网络的基本结构——神经元;
  • 在神经元中使用S型激活函数;
  • 神经网络就是连接在一起的神经元;
  • 构建了一个数据集,输入(或特征)是体重和身高,输出(或标签)是性别;
  • 学习了损失函数和均方差损失;
  • 训练网络就是最小化其损失;
  • 用反向传播方法计算偏导;
  • 用随机梯度下降法训练网络;

接下来你还可以:

  • 机器学习库实现更大更好的神经网络,例如TensorFlow、Keras和PyTorch;
  • 其他类型的激活函数;
  • 其他类型的优化器;
  • 学习卷积神经网络,这给计算机视觉领域带来了革命;
  • 学习递归神经网络,常用于自然语言处理;
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100720
  • 神经元
    +关注

    关注

    1

    文章

    363

    浏览量

    18449
  • python
    +关注

    关注

    56

    文章

    4793

    浏览量

    84631
收藏 人收藏

    评论

    相关推荐

    人工神经网络原理及下载

    这个网络输入和相应的输出来“训练”这个网络网络根据输入和输出不断地调节自己的各节点之间的权值满足输入和输出。这样,当训练结束后,我们给定
    发表于 06-19 14:40

    labview BP神经网络实现

    请问:我在用labview做BP神经网络实现故障诊断,在NI官网找到了机器学习工具包(MLT),但是里面没有关于这部分VI的帮助文档,对于”BP神经网络分类“这个范例有很多不懂的地方,比如
    发表于 02-22 16:08

    【PYNQ-Z2试用体验】神经网络基础知识

    神经网络的计算。对于多层多节点的神经网络,我们可以使用矩阵乘法表示。在上面的神经网络中,我们将权重作为
    发表于 03-03 22:10

    卷积神经网络如何使用

    卷积神经网络(CNN)究竟是什么,鉴于神经网络在工程上经历了曲折的历史,您为什么还会在意它呢? 对于这些非常中肯的问题,我们似乎可以给出相对简明的答案。
    发表于 07-17 07:21

    【案例分享】ART神经网络与SOM神经网络

    今天学习了两神经网络,分别是自适应谐振(ART)神经网络与自组织映射(SOM)神经网络。整体感觉不是很难,只不过些最基础的概念容易
    发表于 07-21 04:30

    人工神经网络实现方法有哪些?

    人工神经网络(Artificial Neural Network,ANN)是种类似生物神经网络的信息处理结构,它的提出是为了解决些非线性,非平稳,复杂的实际问题。那有哪些办法能
    发表于 08-01 08:06

    什么是LSTM神经网络

    简单理解LSTM神经网络
    发表于 01-28 07:16

    如何构建神经网络

    原文链接:http://tecdat.cn/?p=5725 神经网络种基于现有数据创建预测的计算系统。如何构建神经网络神经网络包括:输入层:根据现有数据获取输入的层隐藏层:使用反
    发表于 07-12 08:02

    matlab实现神经网络 精选资料分享

    神经神经网络,对于神经网络实现是如何直没有具体实现
    发表于 08-18 07:25

    基于BP神经网络的PID控制

    最近在学习电机的智能控制,上周学习了基于单神经元的PID控制,这周研究基于BP神经网络的PID控制。神经网络具有任意非线性表达能力,可以通过对系统性能的学习
    发表于 09-07 07:43

    卷积神经网络维卷积的处理过程

    inference在设备端上做。嵌入式设备的特点是算力不强、memory小。可以通过对神经网络做量化降load和省memory,但有时可能memory还吃紧,就需要对神经网络在memory使用上做进
    发表于 12-23 06:16

    Python从头实现神经网络理解神经网络的原理1

    事情可能会让初学者惊讶:神经网络模型并不复杂!『神经网络』这个词让人觉得很高大上,但实际上神经网络算法要比人们想象的简单。 这篇文章完全是为新手准备的。我们会通过
    的头像 发表于 02-27 15:05 689次阅读
    <b class='flag-5'>用</b><b class='flag-5'>Python</b><b class='flag-5'>从头</b><b class='flag-5'>实现</b><b class='flag-5'>一</b><b class='flag-5'>个</b><b class='flag-5'>神经网络</b><b class='flag-5'>来</b><b class='flag-5'>理解</b><b class='flag-5'>神经网络</b>的原理1

    Python从头实现神经网络理解神经网络的原理2

    事情可能会让初学者惊讶:神经网络模型并不复杂!『神经网络』这个词让人觉得很高大上,但实际上神经网络算法要比人们想象的简单。 这篇文章完全是为新手准备的。我们会通过
    的头像 发表于 02-27 15:06 619次阅读
    <b class='flag-5'>用</b><b class='flag-5'>Python</b><b class='flag-5'>从头</b><b class='flag-5'>实现</b><b class='flag-5'>一</b><b class='flag-5'>个</b><b class='flag-5'>神经网络</b><b class='flag-5'>来</b><b class='flag-5'>理解</b><b class='flag-5'>神经网络</b>的原理2

    Python从头实现神经网络理解神经网络的原理3

    事情可能会让初学者惊讶:神经网络模型并不复杂!『神经网络』这个词让人觉得很高大上,但实际上神经网络算法要比人们想象的简单。 这篇文章完全是为新手准备的。我们会通过
    的头像 发表于 02-27 15:06 724次阅读
    <b class='flag-5'>用</b><b class='flag-5'>Python</b><b class='flag-5'>从头</b><b class='flag-5'>实现</b><b class='flag-5'>一</b><b class='flag-5'>个</b><b class='flag-5'>神经网络</b><b class='flag-5'>来</b><b class='flag-5'>理解</b><b class='flag-5'>神经网络</b>的原理3

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中基础且
    的头像 发表于 07-10 15:20 1027次阅读