尽管interwetten与威廉的赔率体系 电路课程中教授电流镜和电路(如Howland电流源),但令人惊讶的是,在定义精密模拟电路的输出时,许多工程师倾向于只考虑电压。这很遗憾,因为电流输出在许多情况下都具有优势,包括在高噪声环境中的模拟电流环路信号(0 mA至20 mA和4 mA至20 mA),以及在不使用光学或磁隔离威廉希尔官方网站 的情况下在大电位差上对模拟信号进行电平转换。本文总结了一些可用的威廉希尔官方网站 ,并提出了一些有用的电路。
获得稳定的电流输出非常容易。最简单的方法使用电流镜:如图1所示连接两个相同的晶体管(在同一芯片上制造,因此它们的工艺、几何形状和温度都相同)。两个器件的基极-发射极电压相同,因此流经T2集电极的输出电流与流经T1集电极的输入电流相同。
图1.基本电流镜。
该分析假设T1和T2相同且等温,并且它们的电流增益如此之大,以至于基极电流可以忽略不计。它还忽略了早期电压,这会导致集电极电流随集电极电压的变化而变化。
这些电流镜可以用NPN或PNP晶体管制成。通过并联连接的n个晶体管形成T2,输出电流将是输入电流的n倍,如图2a所示。如果T1由m个晶体管组成,T2由n个晶体管组成,则输出电流将是输入电流的n/m倍,如图2b所示。
图2.(a) 多级电流镜和 (b) 非整数比电流镜。
三个 T2 收集器可以连接起来得到 3I在.
如果早期电压的影响很重要,则可以通过使用稍微复杂的Wilson电流镜将其最小化。三晶体管和四晶体管版本如图3所示。四晶体管版本更精确,动态范围更宽。
图3.威尔逊电流镜。T4 是可选的,但提高了精度和动态范围。
当需要跨导放大器(voltage_in/current_out)时,可以使用单电源运算放大器、BJT或FET(MOSFET通常是最佳选择,因为没有基极电流误差)和定义跨导的精密电阻,如图4所示。
图4.跨导放大器。V在–我外.
该电路既简单又便宜。MOSFET 栅极上的电压设置了 MOSFET 和 R1 中的电流,使得 V1(R1 两端的电压)等于输入电压 V在.
如果单片IC内部需要电流镜,则简单的晶体管电流镜是理想的选择。然而,对于分立电路,匹配晶体管的高价格(由于需求有限,而不是任何制造困难)使得图5所示的运算放大器电流镜成为最便宜的威廉希尔官方网站 。该电流镜使用一个跨导放大器和一个附加电阻。
图5.运算放大器电流镜。
电流镜具有相对较高的,有时是非线性的输入阻抗,因此它们必须由来自高阻抗电流源(有时称为刚性电流源)的电流馈电。如果输入电流必须具有低阻抗灌电流,则需要运算放大器。图 6 显示了两个低 Z在当前镜像。
图6.(a) 反转低 Z在电流镜和 (b) 同相低 Z在当前镜像。
对于基本电流镜和电流源,输入和输出电流极性相同。通常,输出晶体管的发射极/源极直接或通过检测电阻接地,输出电流从集电极/漏极流向负载,负载的另一个端子连接到直流电源。这并不总是很方便,特别是当负载的一个端子必须接地时。如果电路的发射极/源极可能构建在直流电源上,则这不是问题,如图7所示。
图7.接地负载的电流镜。
如果电流或电压输入以地为基准,则必须使用电平转换。可以使用各种电路,但图8所示的系统适用于许多情况。这个简单的电路使用接地上的电流源来驱动直流电源上的电流镜,从而驱动负载。请注意,电流镜可能具有增益,因此信号电流不必与负载电流一样大。
图8.电平转换电流镜。
到目前为止,我们讨论的电路是单极性的,即电流沿一个方向流动,但也有可能形成双极性电流电路。最简单和最著名的是Howland电流泵,如图9所示。这种简单的电路存在许多问题:它需要非常精确的电阻匹配才能获得高输出阻抗;输入源阻抗会增加R1的电阻,因此必须非常低,以最小化匹配误差;电源电压必须大大高于最大输出电压;运算放大器的CMRR必须相当好。
图9.豪兰电流泵。双极性电流输出。
当今的高性能仪表放大器(仪表放大器)并不昂贵,因此使用运算放大器、仪表放大器和电流检测电阻制作双极性电流源非常简单,如图10所示。这种电路比Howland泵更简单,不依赖于电阻网络(与仪表放大器集成的电阻网络除外),并且每个电源的电压摆幅可能约为500 mV以内。
图 10.双极性电流运算放大器
到目前为止,我们考虑的电路是具有精密电流输出的放大器。当然,它们可以与固定输入一起使用作为精确的电流源,但可以构建更简单的2端子电流源。低电流基准电压源ADR291的待机电流约为10 μA,典型温度系数为20 nA/°C。加上一个负载电阻,如图11所示,3 V至15 V电源范围内的基准电流为(2.5/R + 0.01) mA,其中R是负载电阻,单位为kΩ。
图 11.2端子电流源。
如果精度不是问题,并且只需要一个刚性单极性电流源,则可以使用耗尽模式JFET和电阻构建电流源。如图12所示,这种布置在温度上不是特别稳定,对于给定的R值,电流可能因器件而异,但它简单且便宜。
图 12.JFET电流源。
我最近需要为一些 LED 供电。几个工程师朋友认为我很难使他们所需的可变电流电源变暗。事实上,我很快就修改了一些“黑砖”笔记本电脑电源(在汽车后备箱销售中以几美分的价格购买)来完成这项工作。图13显示了为LED提供恒定电流的简单修改。输出电流小时,该器件可在固定输出电压下正常工作。
图 13.黑砖开关电源经过修改,用于限流输出。
为了产生可变电流,将来自黑砖或本地的基准电压源施加到由P1和P2表示的电位计上。OPA2 和 MOSFET 通过 R1 发送小电流,导致其两端出现压降。负载电流流经检测电阻。如果负载电流引起的检测电阻中的压降超过R1两端的压降,则OPA1的输出将上升,覆盖砖中的电压控制,并限制其输出电压以防止输出电流超过限值。
本文对基本电流源概念的讨论不是详细的应用笔记。一些电路需要进一步的设计工作来限制(或耗散)热量,确保放大器的稳定性,不超过绝对最大额定值,并计算可行的性能限值。
审核编辑:郭婷
-
芯片
+关注
关注
455文章
50756浏览量
423335 -
放大器
+关注
关注
143文章
13589浏览量
213402 -
晶体管
+关注
关注
77文章
9684浏览量
138118
发布评论请先 登录
相关推荐
评论