0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

聊聊接口优化的几个方法

马哥Linux运维 来源:稀土掘金威廉希尔官方网站 社区 2023-01-30 09:37 次阅读

哪些问题会引起接口性能问题?

这个问题的答案非常多,需要根据自己的业务场景具体分析。这里做一个不完全的总结:

数据库慢查询

深度分页问题

未加索引

索引失效

join过多

子查询过多

in中的值太多

单纯的数据量过大

业务逻辑复杂

循环调用

顺序调用

线程池设计不合理

锁设计不合理

机器问题(fullGC,机器重启,线程打满)

问题解决

1、慢查询(基于mysql)

1.1 深度分页

所谓的深度分页问题,涉及到mysql分页的原理。通常情况下,mysql的分页是这样写的:

selectname,codefromstudentlimit100,20

含义当然就是从student表里查100到120这20条数据,mysql会把前120条数据都查出来,抛弃前100条,返回20条。当分页所以深度不大的时候当然没问题,随着分页的深入,sql可能会变成这样:

selectname,codefromstudentlimit1000000,20

这个时候,mysql会查出来1000020条数据,抛弃1000000条,如此大的数据量,速度一定快不起来。那如何解决呢?一般情况下,最好的方式是增加一个条件:

selectname,codefromstudentwhereid>1000000limit20

这样,mysql会走主键索引,直接连接到1000000处,然后查出来20条数据。但是这个方式需要接口的调用方配合改造,把上次查询出来的最大id以参数的方式传给接口提供方,会有沟通成本(调用方:老子不改!)。

1.2 未加索引

这个是最容易解决的问题,我们可以通过

showcreatetablexxxx(表名)

查看某张表的索引。具体加索引的语句网上太多了,不再赘述。不过顺便提一嘴,加索引之前,需要考虑一下这个索引是不是有必要加,如果加索引的字段区分度非常低,那即使加了索引也不会生效。另外,加索引的alter操作,可能引起锁表,执行sql的时候一定要在低峰期(血泪史!!!!)

1.3 索引失效

这个是慢查询最不好分析的情况,虽然mysql提供了explain来评估某个sql的查询性能,其中就有使用的索引。但是为啥索引会失效呢?mysql却不会告诉咱,需要咱自己分析。大体上,可能引起索引失效的原因有这几个(可能不完全):

88e72978-9fc3-11ed-bfe3-dac502259ad0.png

需要特别提出的是,关于字段区分性很差的情况,在加索引的时候就应该进行评估。如果区分性很差,这个索引根本就没必要加。区分性很差是什么意思呢,举几个例子,比如:

某个字段只可能有3个值,那这个字段的索引区分度就很低。

再比如,某个字段大量为空,只有少量有值;

再比如,某个字段值非常集中,90%都是1,剩下10%可能是2,3,4....

进一步的,那如果不符合上面所有的索引失效的情况,但是mysql还是不使用对应的索引,是为啥呢?这个跟mysql的sql优化有关,mysql会在sql优化的时候自己选择合适的索引,很可能是mysql自己的选择算法算出来使用这个索引不会提升性能,所以就放弃了。这种情况,可以使用force index 关键字强制使用索引(建议修改前先实验一下,是不是真的会提升查询效率):

selectname,codefromstudentforceindex(XXXXXX)wherename='天才'

其中xxxx是索引名。

1.4 join过多 or 子查询过多

我把join过多 和子查询过多放在一起说了。一般来说,不建议使用子查询,可以把子查询改成join来优化。同时,join关联的表也不宜过多,一般来说2-3张表还是合适的。具体关联几张表比较安全是需要具体问题具体分析的,如果各个表的数据量都很少,几百条几千条,那么关联的表的可以适当多一些,反之则需要少一些。

另外需要提到的是,在大多数情况下join是在内存里做的,如果匹配的量比较小,或者join_buffer设置的比较大,速度也不会很慢。但是,当join的数据量比较大的时候,mysql会采用在硬盘上创建临时表的方式进行多张表的关联匹配,这种显然效率就极低,本来磁盘的IO就不快,还要关联。

一般遇到这种情况的时候就建议从代码层面进行拆分,在业务层先查询一张表的数据,然后以关联字段作为条件查询关联表形成map,然后在业务层进行数据的拼装。一般来说,索引建立正确的话,会比join快很多,毕竟内存里拼接数据要比网络传输和硬盘IO快得多。

1.5 in的元素过多

这种问题,如果只看代码的话不太容易排查,最好结合监控和数据库日志一起分析。如果一个查询有in,in的条件加了合适的索引,这个时候的sql还是比较慢就可以高度怀疑是in的元素过多。一旦排查出来是这个问题,解决起来也比较容易,不过是把元素分个组,每组查一次。想再快的话,可以再引入多线程。进一步的,如果in的元素量大到一定程度还是快不起来,这种最好还是有个限制

selectidfromstudentwhereidin(1,2,3......1000)limit200

当然了,最好是在代码层面做个限制

if(ids.size()>200){
thrownewException("单次查询数据量不能超过200");
}

1.6 单纯的数据量过大

这种问题,单纯代码的修修补补一般就解决不了了,需要变动整个的数据存储架构。或者是对底层mysql分表或分库+分表;或者就是直接变更底层数据库,把mysql转换成专门为处理大数据设计的数据库。这种工作是个系统工程,需要严密的调研、方案设计、方案评审、性能评估、开发、测试、联调,同时需要设计严密的数据迁移方案、回滚方案、降级措施、故障处理预案。除了以上团队内部的工作,还可能有跨系统沟通的工作,毕竟做了重大变更,下游系统的调用接口的方式有可能会需要变化。

出于篇幅的考虑,这个不再展开了,笔者有幸完整参与了一次亿级别数据量的数据库分表工作,对整个过程的复杂性深有体会,后续有机会也会分享出来。

2、业务逻辑复杂

2.1 循环调用

这种情况,一般都循环调用同一段代码,每次循环的逻辑一致,前后不关联。比如说,我们要初始化一个列表,预置12个月的数据给前端:

Listlist=newArrayList<>();
for(inti=0;i< 12 ; i ++) {
    Model model = calOneMonthData(i); // 计算某个月的数据,逻辑比较复杂,难以批量计算,效率也无法很高
    list.add(model);
}

这种显然每个月的数据计算相互都是独立的,我们完全可以采用多线程方式进行:

//建立一个线程池,注意要放在外面,不要每次执行代码就建立一个,具体线程池的使用就不展开了
publicstaticExecutorServicecommonThreadPool=newThreadPoolExecutor(5,5,300L,
TimeUnit.SECONDS,newLinkedBlockingQueue<>(10),commonThreadFactory,newThreadPoolExecutor.DiscardPolicy());

//开始多线程调用
List>futures=newArrayList<>();
for(inti=0;i< 12 ; i ++) {
    Futurefuture=commonThreadPool.submit(()->calOneMonthData(i););
futures.add(future);
}

//获取结果
Listlist=newArrayList<>();
try{
for(inti=0;i< futures.size() ; i ++) {
      list.add(futures.get(i).get());
   }
} catch (Exception e) {
   LOGGER.error("出现错误:", e);
}

2.2 顺序调用

如果不是类似上面循环调用,而是一次次的顺序调用,而且调用之间没有结果上的依赖,那么也可以用多线程的方式进行,例如:

88f74d62-9fc3-11ed-bfe3-dac502259ad0.png

代码上看:

Aa=doA();
Bb=doB();

Cc=doC(a,b);

Dd=doD(c);
Ee=doE(c);

returndoResult(d,e);

那么可用CompletableFuture解决

CompletableFuturefutureA=CompletableFuture.supplyAsync(()->doA());
CompletableFuturefutureB=CompletableFuture.supplyAsync(()->doB());
CompletableFuture.allOf(futureA,futureB)//等ab两个任务都执行完成

Cc=doC(futureA.join(),futureB.join());

CompletableFuturefutureD=CompletableFuture.supplyAsync(()->doD(c));
CompletableFuturefutureE=CompletableFuture.supplyAsync(()->doE(c));
CompletableFuture.allOf(futureD,futureE)//等de两个任务都执行完成

returndoResult(futureD.join(),futureE.join());

这样A B 两个逻辑可以并行执行,D E两个逻辑可以并行执行,最大执行时间取决于哪个逻辑更慢。

3、线程池设计不合理

有的时候,即使我们使用了线程池让任务并行处理,接口的执行效率仍然不够快,这种情况可能是怎么回事呢?

这种情况首先应该怀疑是不是线程池设计的不合理。我觉得这里有必要回顾一下线程池的三个重要参数:核心线程数、最大线程数、等待队列。这三个参数是怎么打配合的呢?当线程池创建的时候,如果不预热线程池,则线程池中线程为0。当有任务提交到线程池,则开始创建核心线程。

892629ac-9fc3-11ed-bfe3-dac502259ad0.png

当核心线程全部被占满,如果再有任务到达,则让任务进入等待队列开始等待。

8942b072-9fc3-11ed-bfe3-dac502259ad0.png

如果队列也被占满,则开始创建非核心线程运行。

89600fdc-9fc3-11ed-bfe3-dac502259ad0.png

如果线程总数达到最大线程数,还是有任务到达,则开始根据线程池抛弃规则开始抛弃。

897d83f0-9fc3-11ed-bfe3-dac502259ad0.png

那么这个运行原理与接口运行时间有什么关系呢?

核心线程设置过小:核心线程设置过小则没有达到并行的效果

线程池公用,别的业务的任务执行时间太长,占用了核心线程,另一个业务的任务到达就直接进入了等待队列

任务太多,以至于占满了线程池,大量任务在队列中等待

在排查的时候,只要找到了问题出现的原因,那么解决方式也就清楚了,无非就是调整线程池参数,按照业务拆分线程池等等。

4、锁设计不合理

锁设计不合理一般有两种:锁类型使用不合理 or 锁过粗。

锁类型使用不合理的典型场景就是读写锁。也就是说,读是可以共享的,但是读的时候不能对共享变量写;而在写的时候,读写都不能进行。在可以加读写锁的时候,如果我们加成了互斥锁,那么在读远远多于写的场景下,效率会极大降低。

锁过粗则是另一种常见的锁设计不合理的情况,如果我们把锁包裹的范围过大,则加锁时间会过长,例如:

publicsynchronizedvoiddoSome(){
Filef=calData();
uploadToS3(f);
sendSuccessMessage();
}

这块逻辑一共处理了三部分,计算、上传结果、发送消息。显然上传结果和发送消息是完全可以不加锁的,因为这个跟共享变量根本不沾边。因此完全可以改成:

publicvoiddoSome(){
Filef=null;
synchronized(this){
f=calData();
}
uploadToS3(f);
sendSuccessMessage();
}

5、机器问题(fullGC,机器重启,线程打满)

造成这个问题的原因非常多,笔者就遇到了定时任务过大引起fullGC,代码存在线程泄露引起RSS内存占用过高进而引起机器重启等待诸多原因。需要结合各种监控和具体场景具体分析,进而进行大事务拆分、重新规划线程池等等工作

6、万金油解决方式

万金油这个形容词是从我们单位某位老师那里学来的,但是笔者觉得非常贴切。这些万金油解决方式往往能解决大部分的接口缓慢的问题,而且也往往是我们解决接口效率问题的最终解决方案。当我们实在是没有办法排查出问题,或者实在是没有优化空间的时候,可以尝试这种万金油的方式。

6.1 缓存

缓存是一种空间换取时间的解决方案,是在高性能存储介质上(例如:内存、SSD硬盘等)存储一份数据备份。当有请求打到服务器的时候,优先从缓存中读取数据。如果读取不到,则再从硬盘或通过网络获取数据。由于内存或SSD相比硬盘或网络IO的效率高很多,则接口响应速度会变快非常多。缓存适合于应用在数据读远远大于数据写,且数据变化不频繁的场景中。从威廉希尔官方网站 选型上看,有这些:

简单的map

guava等本地缓存工具包

缓存中间件:redis、tair或memcached

当然,memcached现在用的很少了,因为相比于redis他不占优势。tair则是阿里开发的一个分布式缓存中间件,他的优势是理论上可以在不停服的情况下,动态扩展存储容量,适用于大数据量缓存存储。相比于单机redis缓存当然有优势,而他与可扩展Redis集群的对比则需要进一步调研。

进一步的,当前缓存的模型一般都是key-value模型。如何设计key以提高缓存的命中率是个大学问,好的key设计和坏的key设计所提升的性能差别非常大。而且,key设计是没有一定之规的,需要结合具体的业务场景去分析。各个大公司分享出来的相关文章,缓存设计基本上是最大篇幅。

6.2 回调 or 反查

这种方式往往是业务上的解决方式,在订单或者付款系统中应用的比较多。举个例子:当我们付款的时候,需要调用一个专门的付款系统接口,该系统经过一系列验证、存储工作后还要调用银行接口以执行付款。由于付款这个动作要求十分严谨,银行侧接口执行可能比较缓慢,进而拖累整个付款接口性能。这个时候我们就可以采用fast success的方式:当必要的校验和存储完成后,立即返回success,同时告诉调用方一个中间态“付款中”。而后调用银行接口,当获得支付结果后再调用上游系统的回调接口返回付款的最终结果“成果”or“失败”。这样就可以异步执行付款过程,提升付款接口效率。当然,为了防止多业务方接入的时候回调接口不统一,可以把结果抛进kafka,让调用方监听自己的结果。

899e6584-9fc3-11ed-bfe3-dac502259ad0.png

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 接口
    +关注

    关注

    33

    文章

    8620

    浏览量

    151326
  • 数据库
    +关注

    关注

    7

    文章

    3817

    浏览量

    64482
  • MySQL
    +关注

    关注

    1

    文章

    816

    浏览量

    26613
  • 线程
    +关注

    关注

    0

    文章

    505

    浏览量

    19703
  • 接口优化
    +关注

    关注

    0

    文章

    4

    浏览量

    1362

原文标题:聊聊接口优化的几个方法

文章出处:【微信号:magedu-Linux,微信公众号:马哥Linux运维】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    ARM开发中几个常见的寄存器详解

    笔者今天来聊聊对于ARM几个特殊寄存器的理解,FP、SP和LR。
    发表于 11-22 09:02 4205次阅读

    聊聊寄存器被优化的2种情况

    在项目初期,在使用FPGA工具quartus或者vivado生成版本烧入开发板进行调试时(DC开启优化选项后同样会优化掉寄存器),我们有时会发现部分寄存器被优化掉了,今天简单聊聊
    的头像 发表于 09-08 15:09 2305次阅读
    <b class='flag-5'>聊聊</b>寄存器被<b class='flag-5'>优化</b>的2种情况

    差分接口优化射频收发器设计介绍

    实际设计过程中,工程师需要处理几个常见问题,包括阻抗匹配、共模电压匹配以及复杂的增益计算。了解发射机和接收机中的差分电路对优化增益匹配和系统性能很有帮助。 
    发表于 07-04 07:47

    电源优化方法是什么

    目录一、电源优化方法1.1 功能禁用1.2 动态功耗管理 (Dynamic Power Management)1.3 频率缩放1.4 时钟门控1.5 使用PL加速二、四大功耗域及PMU2.1 电池
    发表于 11-12 08:36

    聊聊使用功率FET应该注意的问题有哪些

    稳压电源,几乎都能发现FET的影子。几乎每个电源工程师都用过这东西,或用来逆变;或用来整流;或就当个开关。 由于用处不同;每个厂家都对不同用处FET做了专门优化。以致同样耐压/电流的FET;有多个
    发表于 11-12 07:10

    几个android版本中电量优化功能

    针对电量优化android的改动在最近几个android版本中已存在的电量优化功能基础上,Android 9 引入了一些新功能来持续改进设备电源管理,以确保将系统资源提供给最需要它们的应用.近
    发表于 12-27 07:23

    聊聊复位电路

    时钟电路我第一篇博客已经说讲过了,今天我们来聊聊复位电路。当然,复位电路博大精深,并...
    发表于 01-17 07:50

    优化Unity程序的方法

    的帧速率,使其成为更好、更流畅的体验。 本指南介绍了优化Unity程序的方法,尤其是它们的GPU使用。 本指南将优化分为三章: •应用程序处理器优化•GPU
    发表于 08-02 18:52

    接口协议智能编解码方法研究

    针对当前复杂信息系统仿真中,关于接口协议编解码方法的缺陷,从接口协议的存储、程序设计的数据结构和编解码流程几个方面,给出了复杂信息系统仿真中接口
    发表于 02-21 11:07 20次下载

    提升WiFi信号质量的几个方法

    提升WiFi信号质量的几个方法
    发表于 01-12 21:58 11次下载

    优化嵌入式软件时可以遵循几个通用技巧盘点

    早前的专栏中曾讨论过在许多情况下需要优化的嵌入式系统的关键特征,包括系统时序、代码大小、RAM使用率和能耗。虽然优化每个特征通常要求不同的方法和威廉希尔官方网站 ,但开发人员在优化嵌入式软件时可以遵
    发表于 03-08 14:40 665次阅读

    几个Matlab编程中常用的优化技巧

    用过Matlab的同学应该都知道,Matlab的慢是出了名的,但是再慢也有优化的方式,下面我们给出几个Matlab编程中常用的优化技巧。
    的头像 发表于 02-08 15:18 3728次阅读

    利用axi_master接口指令端的几个静态参数的优化技巧

    本文给大家提供利用axi_master接口指令端的几个静态参数的优化技巧,从扩展总线接口数量,扩展总线位宽,循环展开等角度入手。最核心的优化
    的头像 发表于 07-01 09:39 1522次阅读

    接口优化的常见方案实战总结

    针对老项目,去年做了许多降本增效的事情,其中发现最多的就是接口耗时过长的问题,就集中搞了一次接口性能优化。本文将给小伙伴们分享一下接口优化
    的头像 发表于 03-06 09:22 579次阅读

    聊聊JVM如何优化

    进行优化。 1.JVM内存模型 针对JAVA8的模型进行讨论,JVM的内存模型主要分为几个关键区域:堆、方法区、程序计数器、虚拟机栈和本地方法栈。堆内存进一步细分为年轻代、老年代,年轻
    的头像 发表于 08-05 17:49 488次阅读
    <b class='flag-5'>聊聊</b>JVM如何<b class='flag-5'>优化</b>