0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用于低温电池的胶体电解质

清新电源 来源:水系储能 2023-01-09 09:36 次阅读

研究背景

由于水本身的高凝固点特性,水系电池一直存在低温性能不佳的问题(如放电容量低、功率密度低,甚至出现枝晶状冰晶损坏电池组件等)。因此,这极大地限制了水电池的实际应用。

目前,人们主要致力于降低电解质冰点以提高水系电池的低温性能。降低电解质凝固点的方法,主要集中在调节水分子与离子或有机添加剂之间的相互作用。尽管这些方法已经证明了它们的有效性,但电解质配方的重大变化可能会损害水系电池的优点,如成本,安全性。

最近Wang等人发现“冻结”的电解液也可以维持电池的正常运行。然而,目前对于冻结电解质的相变过程以及离子传输通道的形成过程仍缺乏深入的了解。更重要的是,迫切需要了解这些过程,以便来调节冷冻电解质的结构,进一步提高低温水系电池的性能。

近日,中国科大任晓迪教授&南开大学陶占良教授等人通过多种原位变温威廉希尔官方网站 揭示了冻结电解质中用于离子输运的液体区域的形成过程。更重要的是,作者使用氧化石墨烯量子点(GOQDs) 设计的胶体电解质显著提高了水系电池的低温性能。GOQDs有效地抑制了冰晶的生长,并扩大了用于离子运输的相互连接的液体区域。

图文导读

图1. 冷冻电解质的结构及离子在冷冻电解质中的输运机理.

5d058f02-8fba-11ed-bfe3-dac502259ad0.png

(a) 2 m NaClO4电解质在25℃和-20℃下ClO4˗拉伸模式(900 - 1000 cm-1)的典型曲线拟合结果。(b) 2 m NaClO4电解质在25℃和-20℃下的自然丰度17O-NMR谱。(c)在25℃和-20℃显微镜下观察2 m NaClO4电解质。比例尺为200 μm。(d) H2O和2 m NaClO4电解质在25℃和-20℃下的O-H拉伸振动。(e)在25℃、0℃和-20℃条件下,通过pfg-NMR实验得到的2m NaClO4电解质的Na+和H2O自扩散系数。(f) 2 m NaClO4电解液冷却/加热过程拉曼光谱等高线图。(g) 2 m NaClO4电解质在-20℃时的结构示意图。

▲冻结电解质结构揭示

如图1为了揭示冻结电解质中离子的传输机制,作者采用原位变温Raman、NMR、光学显微镜、pfg-NMR等手段以及结合前人的研究证实了冻结的水系电解质中存在相互连通的液体区域。电解液冻结后,先前分散在水中的溶质集中在冰晶之间的剩余水通道中,此时离子依靠冰晶之间的液体区域进行离子输运。

图2.电解质结构随温度的变化.

5d3b2f0e-8fba-11ed-bfe3-dac502259ad0.png

(a) 2 m NaClO4电解质在不同温度(25℃至- 80℃)下典型ClO4-拉伸模式(900 - 1000 cm-1)的原位变温拉曼光谱。(b)不同温度(25℃~ -80℃)下ClO4-拉伸位移。(c) 2 m NaClO4电解质在25℃、- 20℃和- 60℃下ClO4-拉伸模式(900 - 1000 cm-1)的典型曲线拟合结果。(d) 2 m NaClO4电解质的原位变温XRD。(e)对2 m NaClO4电解质进行DSC测试,温度从25℃到-80℃,冷却速度为5℃/ min。(f) 2 m NaClO4电解质随温度的结构演化示意图。

▲电解液结构随温度的演变

从原位变温Raman结果(图2a)来看,在冻结前(25℃~ -10℃),电解质浓度没有变化,因此ClO4-的拉曼位移保持不变。随着温度的持续降低(-20℃~ -50℃),电解质冻结,ClO4-的拉曼位移向较高的波数转移,这对应于电解质液体区浓度逐渐增加的过程。

然而,随着温度的继续降低,ClO4-的信号基本上停止移动。ClO4-信号随温度降低的变化趋势如图2b所示。同时,原位变温XRD结果显示,当温度降低到-20℃时,冰的(111)衍射峰开始显露(图2e)。当温度降低到-60℃时,出现了NaClO4晶体的信号峰,该结果与Raman和DSC结果相一致。随着温度的降低,电解液结构的演变如图2f所示,其中包括液相、冰/浓液相和盐析三个阶段。

电解液在冷却过程中首先保持液态,当温度下降到某一点(可能对应于DSC曲线上的转折点)时开始冻结并形成冰晶。在这一阶段,随着冰与液相共存,冷却过程中形成更多的冰晶,盐浓度逐渐增加。冻结电解质中相互连通的液体区域起着离子传输的作用。

然而,应该注意的是,随着温度的进一步降低,这种液体区域是不稳定的。当液体区盐浓度过饱和时,会发生盐沉淀(由上述Raman和XRD结果可见),破坏离子运输途径,甚至使电池停止工作。因此,冻结电解质可能只能在冰/浓缩液相阶段的温度窗口内工作,电池性能基本上取决于两相之间的平衡。因此,抑制冰晶生长扩大冻结电解质液相范围对提高低温性能具有重要意义。

3. 低温水系电池的新策略及GOQDs的作用机理.

5d55aa28-8fba-11ed-bfe3-dac502259ad0.png

(a) -30℃条件下各时刻(5、10、100、200、300和400 ns) GOQDs对冰晶生长interwetten与威廉的赔率体系 影响的快照。(b) GOQDs抑制冰生长的机理。(c)在-30℃时,在400 ns模拟时间后,每个体系的平均HBs数(d)在-30℃时,有/没有GOQDs的2m NaClO4中Na+和水分子扩散的MSD拟合结果(拟合范围:40 ns~360 ns)。(e)五种电解质的融化焓变。(f) -30℃时,这五种电解质中冻结水的量。(g)这五种电解质的离子电导率。在2m NaClO4电解质中加入x mg ml-1的GOQDs,记为2m-x。

▲胶体分散策略提高水系电池的低温性能

作者采用GOQDs来抑制冰晶生长,扩大液相范围。为了研究GOQDs与冷冻电解质之间的微观相互作用,作者采用分子动力学(MD)模拟方法分析了GOQDs对冰晶生长的影响。模拟了-30℃下,有和没有GOQDs的2m NaClO4电解质中冰晶的生长过程。

研究发现,在没有GOQDs的冰板一侧,冰晶逐层生长,而在另一侧,GOQDs开始吸附在冰晶上,界面处存在明显的结构缺陷。当GOQDs被吸收到冰晶的顶部表面后,进一步的生长只能发生在两侧,随着时间的推移,产生了一个越来越明显的曲率。

这种曲率可以有效地抑制冰的生长,这被称为Gibbs−Thomson效应。融化焓测试等其他实验结果更加说明GOQDs抑制了冰的生长,扩大了液体区域的范围。液体范围的扩大使得离子扩散能力更高,有助于促进离子输运,更有助于提高电池低温性能。

图4.含GOQDs的水系电池低温行为研究.

5d66d9c4-8fba-11ed-bfe3-dac502259ad0.png

(a)、(b)电解液冻结时无/有GOQDS的电池示意图。(c) 2m NaClO4中NTP//AC电池的电压分布曲线(不含GOQDs)。(d) 2m NaClO4中NTP//AC电池的电压分布曲线(含GOQDs)。(e) 2m NaClO4(含GOQDs)中NTP//AC电池在-30℃下的充放电容量和CE。

▲鉴于以上策略和机理,如图4,GOQDs的引入使冻结电解液的低温性能得到了极大提升。

研究结论

作者揭示了冻结电解质的一般相变过程和潜在的离子传导机制,证明了其在低温应用中的可行性。利用原位变温威廉希尔官方网站 ,阐明了冻结电解质中相互连接的液体区域的形成过程。更重要的是,氧化石墨烯量子点(GOQDs)胶体电解质的设计有效地抑制了冰晶的生长,扩大了用于离子输运的互连液体区域。

在-30℃时,含有GOQDs的胶体电解质极大地提高了电池容量保持率,达到室温下的74%,并使电池稳定循环超过1000次。调节冻结电解质的结构对于低温水系电池的基础研究和实际应用至关重要,这种新的胶体电解质设计策略证明了“非常规”电解质添加剂在电池应用中的可行性。添加剂结构-性能关系的未来研究将为其在各种电池系统中的应用带来极大的兴趣。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解质
    +关注

    关注

    6

    文章

    811

    浏览量

    20052
  • 电解液
    +关注

    关注

    10

    文章

    848

    浏览量

    23095
  • NMR
    NMR
    +关注

    关注

    0

    文章

    10

    浏览量

    6935

原文标题:任晓迪&陶占良Angew:用于低温电池的胶体电解质

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    半互穿网络电解质用于高电压锂金属电池

    研究背景 基于高镍正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在高电压充电时,高镍正极在高度去锂化状态下,Ni4+的表面反应性显著增强,这会催化正极与电解质界面之间的有害副反应
    的头像 发表于 12-23 09:38 130次阅读
    半互穿网络<b class='flag-5'>电解质</b><b class='flag-5'>用于</b>高电压锂金属<b class='flag-5'>电池</b>

    一种创新的超薄固体聚合物电解质

    传统液态电解质在锂离子电池中的应用,尽管广泛,但在极端环境条件下可能不可避免地面临泄漏、燃烧乃至爆炸的风险,这些安全隐患显著制约了其更为广泛的部署。
    的头像 发表于 11-01 10:31 383次阅读
    一种创新的超薄固体聚合物<b class='flag-5'>电解质</b>

    固态电池中复合锂阳极上固体电解质界面的调控

    采用固体聚合物电解质(SPE)的固态锂金属电池(SSLMB)具有更高的安全性和能量密度,在下一代储能领域具有很大的应用前景。
    的头像 发表于 10-29 16:53 387次阅读
    固态<b class='flag-5'>电池</b>中复合锂阳极上固体<b class='flag-5'>电解质</b>界面的调控

    无极电容器有电解质吗,无极电容器电解质怎么测

    无极电容器通常存在电解质电解质在无极电容器中起着重要作用,它可以增加电容器的电容量和稳定性。然而,电解质也可能带来一些问题,如漏电和寿命问题。
    的头像 发表于 10-01 16:45 373次阅读

    具有密集交联结构的明胶基水凝胶电解质(ODGelMA)

    目前,开发一种能够成功实现兼具机械强度、离子电导率和界面适应性的综合水凝胶电解质基质仍然具有挑战性。
    的头像 发表于 05-22 09:17 727次阅读
    具有密集交联结构的明胶基水凝胶<b class='flag-5'>电解质</b>(ODGelMA)

    电池中盐桥的作用?

    盐桥在原电池中扮演着至关重要的角色,它是一种特殊的电解质通道,用于维持电池电解质的电中性并保证电流的连续流动。
    的头像 发表于 05-21 16:08 2961次阅读

    氧化物布局格局一览 氧化物电解质何以撑起全固态?

    今年以来,各式各样的半固态、全固态电池开始愈发频繁且高调地现身,而背后均有氧化物电解质的身影。
    的头像 发表于 05-16 17:41 1060次阅读

    铌酸锂调控固态电解质电场结构促进锂离子高效传输!

    聚合物基固态电解质得益于其易加工性,最有希望应用于下一代固态锂金属电池
    的头像 发表于 05-09 10:37 765次阅读
    铌酸锂调控固态<b class='flag-5'>电解质</b>电场结构促进锂离子高效传输!

    电解质电极信号采集控制板

    1、产品介绍: 本产品是测量分析人体的血清或者尿液中K,NA CL CA PH LI CL CO2 等离子的浓度含量。 2、应用场景: 电解质分析仪。 3、产品概述: 主控芯片
    的头像 发表于 04-11 09:07 410次阅读
    <b class='flag-5'>电解质</b>电极信号采集控制板

    请问聚合物电解质是如何进行离子传导的呢?

    在目前的聚合物电解质体系中,高分子聚合物在室温下都有明显的结晶性,这也是室温下固态聚合物电解质的电导率远远低于液态电解质的原因。
    的头像 发表于 03-15 14:11 1200次阅读
    请问聚合物<b class='flag-5'>电解质</b>是如何进行离子传导的呢?

    不同类型的电池电解质都是什么?

    电解质通过促进离子在充电时从阴极到阳极的移动以及在放电时反向的移动,充当使电池导电的催化剂。离子是失去或获得电子的带电原子,电池电解质由液体,胶凝和干燥形式的可溶性盐,酸或其他碱组成
    的头像 发表于 02-27 17:42 1545次阅读

    新型固体电解质材料可提高电池安全性和能量容量

    利物浦大学的研究人员公布了一种新型固体电解质材料,这种材料能够以与液体电解质相同的速度传导锂离子,这是一项可能重塑电池威廉希尔官方网站 格局的重大突破。
    的头像 发表于 02-19 16:16 884次阅读

    固态电解质离子传输机理解析

    固态电解质中离子的迁移通常是通过离子扩散的方式实现的。离子扩散是指离子从一个位置移动到另一个位置的过程,使得电荷在材料中传输。
    发表于 01-19 15:12 2720次阅读
    固态<b class='flag-5'>电解质</b>离子传输机理解析

    关于固态电解质的基础知识

    固态电解质在室温条件下要求具有良好的离子电导率,目前所采用的简单有效的方法是元素替换和元素掺杂。
    的头像 发表于 01-19 14:58 1.9w次阅读
    关于固态<b class='flag-5'>电解质</b>的基础知识

    锂离子电池电解液有什么作用?

           锂离子电池作为一种便携式储能设备,广泛用于手机,笔记本电脑,相机,电动自行车,电动汽车等领域。其中锂电池电解液是一个不容忽视的方面。毕竟,占
    的头像 发表于 12-26 17:05 888次阅读