0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于MEMS微型扬声器实现静电式MEMS换能器的设计

MEMS 来源:MEMS 作者:MEMS 2022-12-13 09:30 次阅读

高线性MEMS微型扬声器无疑是当前MEMS领域的研究热点之一。真无线立体声(TWS)耳机带来的卓越互联网连接体验推动了MEMS微型扬声器的开发。随着MEMS微型扬声器能够以更低的电流消耗提供高声压水平,创新且经济高效的声学解决方案(即使对于助听器应用)将变得触手可及。

已有文献报道了很多令人印象深刻的MEMS微型扬声器。它们分别基于不同的换能机制、材料和制造工艺。目前,MEMS微型扬声器的工作原理主要包括压电式、电动式、静电式和热声式换能机制。

比较这些MEMS微型扬声器的一种方法是其几何尺寸——根据特定声学设置中获得的声压级。对于尺寸在亚厘米范围内的微型扬声器,建议采用接近耳道的封闭腔(1.26 立方厘米,根据IEC 60318-4标准)作为声学设置。具体而言,谐波失真在特定声压下应尽可能低。此外,器件的电容负载是估计所报道方案相对功耗的一种重要方式。超过几个纳法拉的电容会产生无功峰值电流,这对于现代TWS耳机常用的电池来说是无法承受的。

据麦姆斯咨询报道,德国弗劳恩霍夫光子微系统IPMS研究所的研究人员在近期发表于Microsystems & Nanoengineering的一篇论文中介绍了针对MEMS微型扬声器的几项研究成果,其中一些实现了基于推挽式(push-pull)概念的设计。由于采用了静态电极,这些方法被认为尺寸很大和/或需要相当高的驱动电压。静电推挽式执行器的概念提供了强大的优势。尤其是在电压偏转关系方面可实现的高线性度是此类执行器的主要特质。然而,由于电极的布置及其各自相对彼此的相对运动,静电推挽式执行器设计的实现仍然具有挑战性。同样,这会影响它们的电压偏转关系以及实现它们的器件设计。到目前为止,静电执行器的普遍缺点是需要在相当高的电压下运行。这尤其适用于推挽式设计的静电执行器,对于微型扬声器,还需要实现低谐波失真。最终,高电压要求和经典的定子梭式电极配置以及吸合现象(奇点)造成的限制有关。

奇点吸引了许多研究人员的兴趣。对于静电驱动MEMS微型扬声器,这种关键行为会在高声压级下工作的微型化、高保真音频再现系统中遇到。典型MEMS微型扬声器设计采用弹性力来平衡静电力。这两种力在本质上截然不同。当输入信号产生足够强的静电力以消除相关的有效刚度时,这种不对称会产生一个奇点,称为吸合。对于最先进的微型扬声器设计,便携式应用对高品质音频再现的需求,意味着需要在接近吸合时运行。只有接近吸合时换能器的灵敏度才足够高,以在低信号电压下产生高声压级,从而适用于便携式设备。此外,只有当微型扬声器以低信号幅度驱动时,总谐波失真(THD)才可以低到可接受的程度。

在实际应用中,并不希望在接近吸合位置操作静电换能器。除非采取特殊的保护措施,否则这种工作方式很容易发生由微小机械冲击造成的灾难性故障。

因此,问题在于如何设计一种静电式MEMS换能器,适合于具有低谐波失真且不需要在吸合奇点附近操作的宽频率范围运行。这个问题的经典答案是使用推挽式设计,在两个定子电极之间放置一个梭形电极。然而,由于所需的定子距离较大,这种推挽式设计利用MEMS实现,也需要在高电压下工作,这对于便携式应用尤其是入耳式应用来说是不切实际的。在之前的论文中,研究人员报道了一种解决大电压问题的不对称设计。

研究人员首次展示了定子梭式配置实际上可以通过将所有三个电极集成到静电弯曲执行器的运动部件中所取代。这意味着电极间距可以保持紧密,实现适合小型便携式设备的电压,同时在不牺牲最大声压级的情况下,大幅改善音频再现的线性度。在这项工作中,研究人员描述了一种基于MEMS威廉希尔官方网站 的静电执行器概念。首先,研究人员介绍了换能器的设计,然后,介绍了弯曲执行器的原理、理论概述和制造工艺。作为概念验证,研究人员展示了一款MEMS微型扬声器,展示了低THD和低电压要求,同时保持足够的SPL。

ef41c64e-7a37-11ed-8abf-dac502259ad0.jpg


采用推挽弯曲执行器的MEMS微型扬声器,俯视示意图和3D视图

ef591510-7a37-11ed-8abf-dac502259ad0.jpg


这项研究中制造的MEMS微型扬声器,a)展示执行器的器件层俯视图;b)具有几何尺寸的推挽式执行器俯视图和局部放大视图

ef6a4b96-7a37-11ed-8abf-dac502259ad0.jpg


MEMS微型扬声器制造工艺流程

这项工作研究的MEMS微型扬声器具有诱人的性能。其静电执行原理不会遇到压电迟滞或固有功率耗散机制,从而实现THD < 1%,无需任何进一步的声学设计或信号预处理。为宏观静电式扬声器提供卓越性能的线性策略,成功应用于低电压MEMS领域。

这种静电式微型扬声器也有望在功耗和峰值电流消耗方面取得重大进展。先进入耳式设备的电池很小(通常为60  mAh)。大部分电池预算都需要留给语音识别和无线连接等智能功能。这限制了音频再现系统的可用功率。

MEMS微型扬声器必须超越这些限制,才能与经典电动或平衡电枢扬声器竞争。其换能器消耗电能的相关关键参数是电容。其电容决定了无功峰值电流和无功功率,必须由不可避免的功率耗散驱动电路处理。该研究提出的微型扬声器的总电容小于1 nF。

相比之下,目前几家商业化MEMS微型扬声器厂商公开的电容值超过了20 nF甚至150 nF。相对较低的信号电压和执行器电容的有益组合,使该研究所提出的MEMS微型扬声器可以通过连接小型锂聚合物电池或锌空气电池的集成电荷泵来驱动。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • mems
    +关注

    关注

    129

    文章

    3937

    浏览量

    190718
  • 扬声器
    +关注

    关注

    29

    文章

    1304

    浏览量

    63062
  • 电池
    +关注

    关注

    84

    文章

    10588

    浏览量

    129952

原文标题:基于推挽原理的静电执行器概念,实现低失真MEMS声学换能器

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    xMEMS推出Sycamore:开创性1毫米超薄近场全频MEMS微型扬声器

    xMEMS推出Sycamore:一款开创性1毫米超薄近场全频MEMS微型扬声器,适用于智能手表、XR眼镜与护目镜、开放耳塞及其他应用。 Sycamore的体积仅为传统动圈单元的七分之
    的头像 发表于 12-05 09:15 599次阅读

    mems传感是什么意思_mems传感原理是什么

    MEMS传感是一种微型电子机械系统(Micro-Electro-Mechanical Systems)传感,它将传感和微机电系统集成在
    的头像 发表于 10-18 15:33 1538次阅读

    动圈扬声器的原理是电磁感应吗

    动圈扬声器,又称为电动扬声器,是一种利用电磁感应原理工作的扬声器。它具有结构简单、性能稳定、频响宽、失真小等优点,广泛应用于音响设备、耳
    的头像 发表于 06-13 11:10 2423次阅读

    立讯精密联合悠声科技推出一款新型双扬声器音频模块Gemini 2.0

    5月27日,立讯精密和全球领先的MEMS扬声器供应商悠声科技(USound)合作推出了一款新型双扬声器音频模块Gemini 2.0。音频模块的设计超出了真正无线立体声 (TWS) 耳塞和入耳
    的头像 发表于 05-27 17:28 745次阅读

    USound宣布推出市场上首个单MEMS驱动音频解决方案

    据麦姆斯咨询报道,全球领先的MEMS扬声器供应商USound宣布推出市场上首个单MEMS驱动音频解决方案
    的头像 发表于 05-20 09:06 513次阅读

    应用于MEMS执行的8英寸硅晶圆上的KNN无铅威廉希尔官方网站 介绍

    据麦姆斯咨询介绍,在微机电系统(MEMS)市场中,基于压电原理的微型执行正在光学、声学、流体学等领域快速发展,应用范围十分广泛,例如喷墨打印头、变焦镜头、微型
    的头像 发表于 05-08 09:05 750次阅读
    应用于<b class='flag-5'>MEMS</b>执行<b class='flag-5'>器</b>的8英寸硅晶圆上的KNN无铅威廉希尔官方网站
介绍

    USound与天键股份联手为顶级品牌提供先进MEMS扬声器解决方案

    MEMS扬声器供应商USound与天键股份(Minami)的合作,将帮助更多电子设备制造商在各种音频产品中集成USound获得专利的压电MEMS扬声器威廉希尔官方网站 。
    的头像 发表于 05-08 09:02 703次阅读

    苹果公司申请一种新型MEMS扬声器微型扬声器设计

    据麦姆斯咨询报道,美国专利商标局近日公布了一项苹果公司的新专利申请,该发明申请提出了一种新型MEMS扬声器微型扬声器设计,苹果公司指出这种微型
    的头像 发表于 05-06 09:15 929次阅读
    苹果公司申请一种新型<b class='flag-5'>MEMS</b><b class='flag-5'>扬声器</b>或<b class='flag-5'>微型</b><b class='flag-5'>扬声器</b>设计

    富迪科技宣布推出基于动圈的MEMS扬声器ForteSound™系列

    据麦姆斯咨询报道,富迪科技(Fortemedia)近日宣布推出其最新创新产品——基于动圈的MEMS扬声器ForteSound™系列,以及其首款产品FS01。
    的头像 发表于 04-24 09:13 914次阅读
    富迪科技宣布推出基于动圈的<b class='flag-5'>MEMS</b><b class='flag-5'>扬声器</b>ForteSound™系列

    蓝牙扬声器中应用的模拟功放芯片

    扬声器是一种把电信号转变为声信号的换能器件,扬声器的性能优劣对音质的影响很大。扬声器在音响设备中是一个较薄弱的器件,而对于音响效果而言,它又是一个较重要的部件。
    的头像 发表于 03-07 09:24 830次阅读
    蓝牙<b class='flag-5'>扬声器</b>中应用的模拟功放芯片

    关于动圈扬声器结构设计详解

    动圈扬声器性能良好,能够相对容易地制造。然而,与所有将电波形转换为声音的换能器一样,其操作可能很复杂,因为动圈扬声器连接电气和机械域。
    发表于 02-09 01:50 1042次阅读

    什么是MEMS交换?MEMS交换原理是什么?

    传输等领域得到了广泛应用。 MEMS交换的原理是利用微机电系统中的微结构来实现光路的开关。该系统由一个微型光学器件和一个驱动电路组成。光学器件包括多个微型反射镜或折射
    的头像 发表于 02-02 14:41 522次阅读

    扬声器外壳的选择技巧

     选择扬声器外壳的类型对性能有重大影响,并决定了整个扬声器系统的许多特性。
    的头像 发表于 01-30 10:49 2146次阅读

    xMEMS携创新的固态全硅MEMS微型扬声器解决方案亮相CES 2024

    1月9日-12日,半导体音频解决方案公司xMEMS在CES 2024通过现场演示连接和体验尖端固态全硅MEMS微型扬声器,展示样机涵盖睡眠耳机、TWS耳机、头戴耳机、入耳
    的头像 发表于 01-15 09:16 1030次阅读

    如何提高微型扬声器的响度

    在当今的消费电子市场中,微型扬声器已经广泛应用于各种设备,包括游戏设备、智能家庭物联网设备和可穿戴设备。尽管那些在公众场合将私人电子产品的声音开的很大常常令人新生讨厌,但在购买的时候你当然会更青睐
    的头像 发表于 01-09 09:14 1010次阅读
    如何提高<b class='flag-5'>微型</b><b class='flag-5'>扬声器</b>的响度