0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Science综述:设计更好的电解质

清新电源 来源:清新电源 作者:清新电源 2022-12-13 09:31 次阅读

一、全文概要

电解质和相关的界面构成了支持新兴电池化学的关键组成部分,这些电池提供了诱人的能量密度,但却涉及剧烈的相位和复杂结构。设计更好的电解质和相间物是这些电池能被成功应用的关键。作为唯一一个与设备中其他所有部件相连接的部件,电解质必须同时满足多个标准。这些标准包括传输离子,同时在电极之间绝缘电子,并保持对极端化学性质的电极的稳定性:强氧化性正极和强还原性负极。在大多数先进的电池中,两个电极的工作电位远远超过了电解质的热力学稳定性极限,因此,其中的稳定性必须通过电解质和电极之间的牺牲反应形成的中间相来实现。最近,来自芝加哥大学的Y. Shirley Meng和来自美国阿贡国家实验室的Venkat Srinivasan和Kang Xu在国际期刊《Science》上发表题为“Designing better electrolytes”的综述性文章。该文章综述了电池的界面化学,为未来的电解质的发展指明方向。

908b8704-7a85-11ed-8abf-dac502259ad0.png

二、正文部分 01 研究亮点 90a1ffc0-7a85-11ed-8abf-dac502259ad0.png 综述了电池的界面化学的研究现状,指明了界面的关键基本属性,如离子在界面上的传输速度和机制仍然未知,但离子溶解鞘的结构已被确定为指导界面形成过程的有效工具。   02 图文导读 90a1ffc0-7a85-11ed-8abf-dac502259ad0.png

90c43978-7a85-11ed-8abf-dac502259ad0.png

电解质和相关的互化物在支持多样化的电池化学中起着核心作用。在负极一侧(左),电解质必须形成一个中间相,以防止石墨负极剥落,并且容纳硅电极的急剧体积变化,还要抑制树枝状金属锂的生长。在正极一侧(右侧),中间相对于防止与电解质发生不可逆反应、维持过渡金属氧化物的晶格结构、抑制多硫化物物质的跨电池穿梭以及协助空气正极的复杂三相反应至关重要。在所有这些情况下,相间层必须在绝缘电子传输的同时实现离子传输。

1.通过中间相运行的LIB

90fba8c2-7a85-11ed-8abf-dac502259ad0.png

图 1.电解质的工作原理。电解质必须传导离子,绝缘电子并保持稳定,同时与所有电池组件相连接。当正极和负极在超出LUMO和HOMO之间封闭区域的电位下运行时,就会出现重大挑战,因为其必须形成界面以确保电池化学的可逆性。

LIB的能量密度和充电能力依赖于中间相的特性(图1)。由于LIB中石墨负极的电位(相对于Li的~0.01V)远远超出了电解质的热力学稳定窗口,正如最高占有分子轨道(HOMOs)和最低未占有分子轨道(LUMOs)所标志的那样,可逆的锂化/去锂化化学反应依赖于界面的保护性能。最先进的锂离子电池所使用的电解质因制造商和所使用的正极化学性质的不同而不同;然而,它们几乎都遵循由六氟磷酸锂(LiPF6)组成骨架,然后溶解在碳酸盐酯类溶剂的混合物中,这是平衡每个电池组件的要求的结果,特别是在低电位(〜0.01 V相对于Li+/Li)和过渡金属氧化物或磷酸盐正极在高电位(〜3.5至4.5 V相对于Li+/Li)下更是如此。现在人们普遍认为,LIB中的SEI主要来自于碳酸盐溶剂和盐类阴离子的还原分解。这些物质通常以分层结构排列,最内层是更多的无机物(LiF和Li2O),外层是更多的有机物(半碳酸盐、草酸盐、烷氧基化物和聚合物)。另外,与SEI相比,人们对CEI的了解要少得多。在某些情况下,甚至CEI的存在也有争议。尽管研究表明,传统的电解质在某些条件下可以支持电池运行到5.6V。但在必须承受长期循环的电池中,对CEI的需求仍然从根本上受到热力学因素不匹配的驱动(图1)。与完全覆盖负极的SEI不同,正极表面的沉积物(主要是无机氟化物和氧化物)经常被发现是分散的和不连续的,这大大引起了人们对它们是否真的具有保护作用的怀疑。

2.为新兴电池化学设计电解质和界面

91203994-7a85-11ed-8abf-dac502259ad0.png

图2. Li0负极的挑战。设计一种电解质和相关的SEI以消除树枝状和死Li0的危险形态是实现可充电锂金属电池的关键。上图:不均匀的SEI促进树枝状Li0在对Li+更有导电性的位置生长,而在树枝状根部附近的溶解导致死Li0与集电器相隔离。中图和下图:设计更好的电解质和相间层可以引导密集型Li0的生长,从而使低长径比的晶体成为首选,这意味着它们在重复电镀和剥离过程中可以保持电气连接。

更为严峻的挑战与锂金属(Li0)负极有关,由于其能量密度,锂金属正被重新视为终极负极材料。锂的高能量伴随着极端的反应性,这与过度和持续的相间生长有关,其最终导致锂电极的低效率和危险的形态(如树枝状和死锂)。确定具有有效SEI化学性质的电解质已成为一个投入巨资的研究方向,目标是锂的沉积可以在高库仑效率(CE%)下均匀进行。特别重要的是要规避分形的、大长宽比的晶体(图2)。这些晶体要么渗透到电池中,形成内部短路,要么在根部附近容易被切断,形成高度危险的死Li0。迄今为止确定的最佳电解质是基于氟化醚分子而不是酯类,它可以达到99.9%的CE%,并在长期循环中抑制危险的Li0形态。电解质成分和相间化学的这种普遍氟化改善了Li0的可逆性,这归因于Li0在LiF上成核的高表面能。另外,在正极方面,对新兴化学的追求一直集中在寻找极高的能量密度或独立于Co或Ni的材料,LIB化学一直严重依赖这两种元素,但它们要么在地壳中极为罕见,要么只能在高地缘政治或道德风险下获得。作为近期目标,已经探索了相对更成熟的材料,如改进的插层化合物,其中一些已经被LIB行业逐步采用。从概念上讲,它们与最先进的LIB正极材料没有明显的区别,但其晶格的结构修改使它们能够在更高的电位下容纳更多的Li+。

913deba6-7a85-11ed-8abf-dac502259ad0.png

图3. 新兴的转换-反应电池化学。氟化铁(上图)和硫(下图)都依靠剧烈的结构破坏和结构重组来提供高容量和能量密度,但其可逆性遇到了严重的挑战,因为几乎不可能完全恢复原始结构,而且产生的活性材料可能溶于电解质并离开电极空腔。

利用转化反应化学物质的更激进的材料被认为是长期目标,主要包括金属氟化物、硫化物、元素硫,甚至是氧气,这些材料在充电电池研究的早期都没有成功应用。与结构变化最小的插层型电极不同,这些电极材料在放电过程中经历了完全的重组,使容量大大增加,但代价是可逆性降低,因为几乎不可能完全恢复原来的电极结构(图3)。由于在纳米结构材料的合成方面取得了进展,这些曾经无法使用的化学材料可以以更高的可行性被重新审视。因此,相应的电解质和界面需要抵抗来自金属氟化物或硫化物产生的纳米金属颗粒的强大催化活性,抑制可溶性多硫化物在电池中的寄生穿梭,并对氧还原产生的活性过氧化物或超氧化物中间物保持惰性。迄今为止,在解决这些挑战方面所做的改进十分有限,这为研究人员留下了广阔的探索空间。

3.新概念电解质和界面相

91545b16-7a85-11ed-8abf-dac502259ad0.png

图4. 固体与固体的连接。在全固态电池中,固体材料的连接遇到了活性负极/正极材料的固体接触点和SEs的挑战和机遇。

SE当前的首要挑战仍然来自固-固界面,因为SE不能流动或渗透到电极的孔隙结构中。克服物理接触问题的一个常见方法是加入受控数量的液体电解质来填充空隙和间隙。这使系统的固体含量减少,并导致混合电解质或半固态。相反,固-固接触的挑战也可以变成一种优势,使锂或硅负极的三维(3D)结构成为可能,因为相间反应只能发生在这些接触点上,而大的体积膨胀和收缩可以通过适当的三维设计和动态压力控制来适应(图4)。SEs的单离子导电性质消除了浓度极化,并允许容纳导致非均匀反应和最终容量消退的局部效应。尽管量化电化学和机械耦合现象仍然是电池领域的一个关键障碍,但最近的研究工作有很大进展,已经科研人员制备出实验室规模的电池同时具有稳定和长的循环寿命。

918d009c-7a85-11ed-8abf-dac502259ad0.png

图5. 纳米封存中的溶解作用。当宿主环境的大小与离子溶解鞘相当时,宿主与离子或其溶剂成员之间的强制相互作用变得不可避免,这诱发了离子的部分或完全脱溶并产生了一系列不寻常的特性

大多数离子溶解鞘的尺寸从一埃到近一纳米不等,取决于溶剂分子和溶解数。随着多样化的纳米材料的出现,一个有趣的问题出现了:被溶解的离子在这些亚纳米结构中会有什么表现?当前已经有许多关于电解质在纳米压制中的不寻常特性的报告。例如,当溶解的四烷基铵阳离子被迫进入小至0.65纳米的孔隙时,出现了反常的电容。当把传统的LIB电解质注入平均直径约40纳米的陶瓷-聚合物复合体的纳米孔中时,出现了明显不同的Li0负极的相间行为和形态。当醚基电解质被冻结在由金属有机框架结构创造的0.29纳米的亚纳米通道中时,电化学稳定性窗口被大大扩展。最后,当同样的聚合物被嵌入到直径为40纳米的陶瓷主机的通道中时,沿陶瓷-聚合物界面发生了远高于相应的大块聚合物电解质的超快离子传输。尽管这些分散的现象似乎没有什么联系,而且每项研究中的研究者都提供了不尽相同的理由,但所有这些都有一个趋同的因素:在纳米结构环境中,溶解的离子很可能与宿主材料的表面存在相互作用(图5)。在此过程中,离子发生了部分或甚至完全的脱溶,产生的电解质的化学状态还没有被完全理解。

4.展望:光明而曲折的未来

91d0c93a-7a85-11ed-8abf-dac502259ad0.png

图6. 在分子分辨率下看到电解质的动态。在计算模拟和建模的帮助下,先进的原位/现场表征为理解和发现电解质及其相间性带来了新的视野。

为了回答前面提到的问题,需要开发新的表征威廉希尔官方网站 ,特别是那些在原位/现场条件下运行的威廉希尔官方网站 和那些具有极高的空间和时间分辨率的威廉希尔官方网站 。在过去的几十年里,尽管已经开发了许多先进的表征工具来探测和量化相间的物质,但直接探测电解质的工具仍然十分缺乏。鉴于典型电解质的非晶体和快速离子动力学性质,具有高化学敏感性和局部结构全散射的光谱方法是最合适的,因为它们能检测长程无序排列。如图6所示,全面了解电解质中的溶解结构、相关的相间化学、其沿二维和三维长度尺度的分布,以及在电化学过程中化学如何演变,可以通过研究使用一系列威廉希尔官方网站 组合收集的大型数据集来实现。这些威廉希尔官方网站 包括液体和固体核磁共振、从X射线或中子散射得到的差分PDF以及配备断层扫描和电子能量损失光谱的低温分析电子显微镜。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电极
    +关注

    关注

    5

    文章

    821

    浏览量

    27246
  • 电解质
    +关注

    关注

    6

    文章

    815

    浏览量

    20089

原文标题:Science综述:设计更好的电解质

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    陈军院士团队最新Angew,聚合物电解质新突破

    研究背景 固态锂金属电池(SSLMBs)因其高的能量密度和优异的安全性能在能源存储领域受到广泛关注。然而,现有固态电解质(SSEs)普遍存在离子传导性差、电极界面稳定性不足等问题,极大地限制了其实
    的头像 发表于 01-06 09:45 57次阅读
    陈军院士团队最新Angew,聚合物<b class='flag-5'>电解质</b>新突破

    镁合金牺牲阳极与电解质接触不良的原因

    一、埋设深度不足 镁阳极的埋设深度决定了其与周围电解质的接触面积和接触质量。如果埋设深度不足,阳极可能与电解质的接触不良,导致保护电流分布不均,影响保护效果。特别是在地下水位较低或土壤干燥的区域
    的头像 发表于 01-02 21:00 47次阅读
    镁合金牺牲阳极与<b class='flag-5'>电解质</b>接触不良的原因

    一种薄型层状固态电解质的设计策略

    研 究 背 景 用固态电解质(SSE)代替有机电解液已被证明是克服高能量密度锂金属电池安全性问题的有效途径。为了开发性能优异的全固态锂金属电池(ASSLMB),SSE通常需要具备均匀且快速的锂离子
    的头像 发表于 12-31 11:21 117次阅读
    一种薄型层状固态<b class='flag-5'>电解质</b>的设计策略

    半互穿网络电解质用于高电压锂金属电池

    研究背景 基于高镍正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在高电压充电时,高镍正极在高度去锂化状态下,Ni4+的表面反应性显著增强,这会催化正极与电解质界面之间的有害副反应
    的头像 发表于 12-23 09:38 257次阅读
    半互穿网络<b class='flag-5'>电解质</b>用于高电压锂金属电池

    固态电池中复合锂阳极上固体电解质界面的调控

    采用固体聚合物电解质(SPE)的固态锂金属电池(SSLMB)具有更高的安全性和能量密度,在下一代储能领域具有很大的应用前景。
    的头像 发表于 10-29 16:53 471次阅读
    固态电池中复合锂阳极上固体<b class='flag-5'>电解质</b>界面的调控

    无极电容器有电解质吗,无极电容器电解质怎么测

    无极电容器通常存在电解质电解质在无极电容器中起着重要作用,它可以增加电容器的电容量和稳定性。然而,电解质也可能带来一些问题,如漏电和寿命问题。
    的头像 发表于 10-01 16:45 409次阅读

    具有密集交联结构的明胶基水凝胶电解质(ODGelMA)

    目前,开发一种能够成功实现兼具机械强度、离子电导率和界面适应性的综合水凝胶电解质基质仍然具有挑战性。
    的头像 发表于 05-22 09:17 824次阅读
    具有密集交联结构的明胶基水凝胶<b class='flag-5'>电解质</b>(ODGelMA)

    氧化物布局格局一览 氧化物电解质何以撑起全固态?

    今年以来,各式各样的半固态、全固态电池开始愈发频繁且高调地现身,而背后均有氧化物电解质的身影。
    的头像 发表于 05-16 17:41 1105次阅读

    铌酸锂调控固态电解质电场结构促进锂离子高效传输!

    聚合物基固态电解质得益于其易加工性,最有希望应用于下一代固态锂金属电池。
    的头像 发表于 05-09 10:37 822次阅读
    铌酸锂调控固态<b class='flag-5'>电解质</b>电场结构促进锂离子高效传输!

    电解质电极信号采集控制板

    1、产品介绍: 本产品是测量分析人体的血清或者尿液中K,NA CL CA PH LI CL CO2 等离子的浓度含量。 2、应用场景: 电解质分析仪。 3、产品概述: 主控芯片
    的头像 发表于 04-11 09:07 425次阅读
    <b class='flag-5'>电解质</b>电极信号采集控制板

    请问聚合物电解质是如何进行离子传导的呢?

    在目前的聚合物电解质体系中,高分子聚合物在室温下都有明显的结晶性,这也是室温下固态聚合物电解质的电导率远远低于液态电解质的原因。
    的头像 发表于 03-15 14:11 1271次阅读
    请问聚合物<b class='flag-5'>电解质</b>是如何进行离子传导的呢?

    不同类型的电池的电解质都是什么?

    电解质通过促进离子在充电时从阴极到阳极的移动以及在放电时反向的移动,充当使电池导电的催化剂。离子是失去或获得电子的带电原子,电池的电解质由液体,胶凝和干燥形式的可溶性盐,酸或其他碱组成。电解质也来自
    的头像 发表于 02-27 17:42 1617次阅读

    新型固体电解质材料可提高电池安全性和能量容量

    利物浦大学的研究人员公布了一种新型固体电解质材料,这种材料能够以与液体电解质相同的速度传导锂离子,这是一项可能重塑电池威廉希尔官方网站 格局的重大突破。
    的头像 发表于 02-19 16:16 916次阅读

    固态电解质离子传输机理解析

    固态电解质中离子的迁移通常是通过离子扩散的方式实现的。离子扩散是指离子从一个位置移动到另一个位置的过程,使得电荷在材料中传输。
    发表于 01-19 15:12 2863次阅读
    固态<b class='flag-5'>电解质</b>离子传输机理解析

    关于固态电解质的基础知识

    固态电解质在室温条件下要求具有良好的离子电导率,目前所采用的简单有效的方法是元素替换和元素掺杂。
    的头像 发表于 01-19 14:58 1.9w次阅读
    关于固态<b class='flag-5'>电解质</b>的基础知识