0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

傅里叶变换、拉普拉斯变换、Z变换剖析

FPGA之家 来源:FPGA之家 作者:FPGA之家 2022-11-28 11:00 次阅读

为什么要读书?

为什么要读书?

书本里,有几千年的哲学观点、有几百年的科学规律、几十年的威廉希尔官方网站 总结。

多读书,可以帮助看明白这个世界,看明白人。

时域、频域、s域、z域

大学《信号与系统》讲了四种域:时域、频域、s域、z域。

f2a11fe2-6eb1-11ed-8abf-dac502259ad0.png

本质上,频域、s域、z域,都是从时域变换到频域。

时域:

连续信号:x(t)

离散信号:x[n]

频域:

连续信号:X(jw)

离散信号:X(e^jw)

转换关系

时域与频域:傅里叶变换

时域与s域:拉普拉斯变化

时域与z域:z变换

频域与s域:jw = s

频域与z域:e^jw = z

为何傅里叶变换?

为什么时域要变化到频域?

当信号从时域变换到频域后。可以观察到很多时域看不到的现象。特别是很多在时域看似不可能的数学操作,在频域反而so easy!

f2ab4972-6eb1-11ed-8abf-dac502259ad0.png

比如,纸上动笔画一个sin(x)函数波形,很简单!

那让你画一个sin(3x)+sin(5x)波形呢?无从动笔?

那给你一个sin(3x)+sin(5x)波形,让你画一个sin(5x)波形呢?

在频域,sin(3x)+sin(5x)就两条竖线!剔除sin(5x)是不是很简单。

从一条曲线中,去除一些特性频率成分,就是信号处理中的滤波。

f2d4b500-6eb1-11ed-8abf-dac502259ad0.png

频谱只代表每一个正弦波的振幅,没有相位信息。相位如何表示?

鉴于正弦波是周期的,我们用下图红色点来标记离频率轴最近的波峰:

f2f09fc2-6eb1-11ed-8abf-dac502259ad0.png

为了看清楚,我们将红色点往下平面投影成粉色点,粉色点与频率轴的距离,这个距离占正弦波的周期的百分比,乘以360°就是相位。

f31a9318-6eb1-11ed-8abf-dac502259ad0.png

为何要拉普拉斯变换?

为何要拉普拉斯变换?

傅里叶变化只能对能量有限的信号进行变换(也就是可以收敛的信号),无法对能量无限的信号进行变换(无法收敛),因此,拉普拉斯应运而生,在原先的傅里叶变换公式中乘以一个衰减因子,使得无限能量的信号也能进行时频变换。

换而言之,傅里叶变换不能分析系统的稳定性,而拉普拉斯变换转成s域就能分析系统的稳定性。

很多曲线,都可以用这些不同频率,连续旋转的圆,通过线性叠加得到,而傅里叶定律,就是对这个结论的数学描述,傅里叶定律说:只要一个函数满足如狄利赫里条件,都能分解为复指数函数之和,哪怕是如拉格朗日提到的带有棱角的方波函数。狄利赫里条件为:

f33886ca-6eb1-11ed-8abf-dac502259ad0.png

傅里叶变换有一个很大局限性,那就是信号必须满足狄利赫里条件才行,特别是那个绝对可积的条件,一下子就拦截掉了一大批函数。比如函数f(t)=t^2就无法进行傅里叶变换。这点难度当然拿不到聪明的数学家们,他们想到了一个绝佳的主意:把不满足绝对的可积的函数乘以一个快速衰减的函数,这样在趋于正无穷时原函数也衰减到零了,从而满足绝对可积。

数学描述是:

f34d866a-6eb1-11ed-8abf-dac502259ad0.png

f355d0d6-6eb1-11ed-8abf-dac502259ad0.png

f36f41ce-6eb1-11ed-8abf-dac502259ad0.png

先上图,我们下文讲零极点稳定性问题。

f37c8654-6eb1-11ed-8abf-dac502259ad0.png

零点、极点分析

1、零点

零点:使系统传递函数G(s)为0的s的值,其中s为复数。比如:

f39cf204-6eb1-11ed-8abf-dac502259ad0.png

s=-1是零点。


2、极点

极点:使系统传递函数G(s)分母为0的s的值,其中s为复数。比如:

f3b28c2c-6eb1-11ed-8abf-dac502259ad0.png

s=-2、s=-3是极点。

为何Z变换?

我们知道,傅里叶变换公示如下:

f3c269f8-6eb1-11ed-8abf-dac502259ad0.png

在函数收敛情况下,才可傅里叶变换,不收敛则乘以一个衰减函数形成拉普拉斯变换。

同样的,离散周期信号的傅里叶级数为:

f3cb1b66-6eb1-11ed-8abf-dac502259ad0.png

f3dc201e-6eb1-11ed-8abf-dac502259ad0.png

f3e65e26-6eb1-11ed-8abf-dac502259ad0.png

进一步化简:

f3f70262-6eb1-11ed-8abf-dac502259ad0.png

令:

f403e874-6eb1-11ed-8abf-dac502259ad0.png

则DFT的表达式变为:这就是Z变换!!!

f40de608-6eb1-11ed-8abf-dac502259ad0.png

精采绝伦吗?继续high

由连续函数*衰减函数的傅里叶变换,即拉普拉斯变换,我们假定了:

f4191154-6eb1-11ed-8abf-dac502259ad0.png

由离散函数*衰减函数的傅里叶变换,即Z变换,我们假定了:

f4289354-6eb1-11ed-8abf-dac502259ad0.png

也就是说,z域和s域有如下关系:

f430aecc-6eb1-11ed-8abf-dac502259ad0.png

f37c8654-6eb1-11ed-8abf-dac502259ad0.png

f4508f08-6eb1-11ed-8abf-dac502259ad0.png

f459118c-6eb1-11ed-8abf-dac502259ad0.png

我们知道在s域上,虚轴上不同的点对应不同的频率,而z域上单位圆与s域虚轴对应,可见,z域单位圆上不同的点,代表了不同的频率。

f4683982-6eb1-11ed-8abf-dac502259ad0.png

对于z域的传递函数的零极点,也有和s域零极点类似的结论:

规律1:如果在单位圆上有零点,则在零点所对应的频率上幅值响应为零;

规律2:对于不在单位圆上的零点,在单位圆上离零点最近的点对应的频率上幅值响应最小。

规律3:对于在单位圆内部的极点,在单位圆上离极点最近的点对应的频率上幅值响应最大。

规律4:如果极点和零点重合,对系统的频率响应没有影响。

零、极点影响频率响应

例子1:

f47d7770-6eb1-11ed-8abf-dac502259ad0.png

对于这个系统,在z=0有一个极点,在z=1时有一个零点。零、极点分布如下:

f484f52c-6eb1-11ed-8abf-dac502259ad0.png

其中o表示零点,x表示极点。从z=1也就是单位圆上角度为零(也是频率为零)的点开始,此处z=1有一个零点,根据规律1,显然在频率为零时系统响应为零。

顺着单位圆沿逆时针方向旋转,我们离零点越来越远,零点的影响也越来越小,因此幅值响应会逐渐增大。当我们到达z=-1 ,也就是频率为1/2fs时,此时离零点最远,因此响应会达到一个最大值,当频率继续增大时,由于离零点又开始接近了,幅值响应又开始变小。

极点正好位于圆心位置,也就是说所有频率段离极点的距离都一样,因此可以认为都没影响。

用freqz函数将系统的频响画出来,如下图,这个系统本质上是一个高通滤波器

f495b4ac-6eb1-11ed-8abf-dac502259ad0.png

这个系统转换到时域:

f4aa90f2-6eb1-11ed-8abf-dac502259ad0.png

是不是很惊喜,这本质就是一个差分,低频信号被过滤,高频信号通过。

这一个差分,对应连续系统的微分。我们知道微分对应的是传递函数是s,稳态时为s=jw,这显然是一个高通滤波器。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 滤波器
    +关注

    关注

    161

    文章

    7799

    浏览量

    178010
  • 傅里叶
    +关注

    关注

    0

    文章

    59

    浏览量

    20465
  • 拉普拉斯
    +关注

    关注

    0

    文章

    35

    浏览量

    9650

原文标题:【剖析】傅里叶变换、拉普拉斯变换、Z变换

文章出处:【微信号:zhuyandz,微信公众号:FPGA之家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    傅立叶变换拉普拉斯变换的区别

    傅里叶变换拉普拉斯变换在信号处理中都是非常重要的工具,但它们之间存在一些显著的区别。以下是对这两种变换区别的介绍: 定义域与适用范围 傅里叶变换
    的头像 发表于 12-06 16:52 345次阅读

    傅里叶变换的基本性质和定理

    傅里叶变换是信号处理和分析中的一项基本工具,它能够将一个信号从时间域(或空间域)转换到频率域。以下是傅里叶变换的基本性质和定理: 一、基本性质 线性性质 : 傅里叶变换是线性的,即对于信号的线性组合
    的头像 发表于 11-14 09:39 627次阅读

    经典傅里叶变换与快速傅里叶变换的区别

    经典傅里叶变换与快速傅里叶变换(FFT)在多个方面存在显著的区别,以下是对这两者的比较: 一、定义与基本原理 经典傅里叶变换 : 是一种将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数
    的头像 发表于 11-14 09:37 330次阅读

    傅里叶变换与图像处理威廉希尔官方网站 的区别

    在数字信号处理和图像分析领域,傅里叶变换和图像处理威廉希尔官方网站 是两个核心概念。尽管它们在实际应用中常常交织在一起,但它们在本质上有着明显的区别。 傅里叶变换的基本原理 傅里叶变换是一种将信号从时域(或空间域
    的头像 发表于 11-14 09:30 309次阅读

    傅里叶变换在信号处理中的应用

    在现代通信和信号处理领域,傅里叶变换(FT)扮演着核心角色。它不仅帮助我们分析信号的频率成分,还能用于滤波、压缩和信号恢复等多种任务。 傅里叶变换的基本原理 傅里叶变换是一种将信号从时域转换到频域
    的头像 发表于 11-14 09:29 955次阅读

    傅里叶变换的数学原理

    傅里叶变换的数学原理主要基于一种将函数分解为正弦和余弦函数(或复指数函数)的线性组合的思想。以下是对傅里叶变换数学原理的介绍: 一、基本原理 傅里叶级数 :对于周期性连续信号,可以将其表示为傅里叶
    的头像 发表于 11-14 09:27 402次阅读

    先进产能设备提供商拉普拉斯科创板上市

    近日,先进产能设备提供商拉普拉斯正式在科创板上市,股票代码为688726,发行价格为每股17.58元。作为高端装备及解决方案领域的佼佼者,拉普拉斯的上市标志着其在光伏和半导体领域的威廉希尔官方网站 实力和市场地位得到了资本市场的认可。
    的头像 发表于 10-30 16:52 354次阅读

    拉普拉斯变换的作用及意义

    拉普拉斯变换在工程数学中是一种重要的积分变换,其作用及意义主要体现在以下几个方面: 作用 简化求解过程 : 微分方程转换为代数方程 :拉普拉斯变换
    的头像 发表于 08-09 09:40 1106次阅读

    数字信号处理三大变换关系包括什么

    数字信号处理是电子工程和信息科学领域的一个重要分支,它涉及到对信号进行分析、处理和转换的方法。数字信号处理的三大变换关系是傅里叶变换拉普拉斯变换
    的头像 发表于 08-09 09:33 956次阅读

    拉普拉斯科创板IPO过会

    拉普拉斯新能源科技股份有限公司,简称“拉普拉斯”,近期成功通过IPO审核,准备在科创板上市。该公司计划募资18亿元,主要用于光伏高端装备研发生产总部基地项目、半导体及光伏高端设备研发制造基地项目,以及补充流动资金。
    的头像 发表于 02-23 14:16 794次阅读

    傅里叶变换拉普拉斯变换的关系是什么

    傅里叶变换拉普拉斯变换是两种重要的数学工具,常用于信号分析和系统理论领域。虽然它们在数学定义和应用上有所差异,但它们之间存在紧密的联系和相互依存的关系。 首先,我们先介绍一下傅里叶变换
    的头像 发表于 02-18 15:45 1694次阅读

    傅里叶变换的应用 傅里叶变换的性质公式

    傅里叶变换(Fourier Transform)是一种数学方法,可以将一个函数在时间或空间域中的表示转化为频率域中的表示。它是由法国数学家约瑟夫·傅里叶(Jean-Baptiste Joseph
    的头像 发表于 02-02 10:36 1344次阅读

    什么是傅里叶变换和逆变换?为什么要用傅里叶变换?

    傅里叶变换和逆变换是一对数学变换,用于分析信号和数据的频域特征。傅里叶变换将一个信号或函数从时间域转换到频域,而逆变换则将
    的头像 发表于 01-11 17:19 3847次阅读

    短时傅里叶变换STFT原理详解

    传统傅里叶变换的分析方法大家已经非常熟悉了,特别是快速傅里叶变换(FFT)的高效实现给数字信号处理威廉希尔官方网站 的实时应用创造了条件,从而加速了数字信号处理威廉希尔官方网站 的发展。
    的头像 发表于 01-07 09:46 2851次阅读
    短时<b class='flag-5'>傅里叶变换</b>STFT原理详解

    什么是傅里叶变换

    傅里叶变换
    安泰仪器维修
    发布于 :2024年01月02日 11:16:02