0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

二氧化碳还原耦合甲醛氧化实现高附加值产物的制备

清新电源 来源:清新电源 作者:李梦雨,邹雨芹 2022-11-17 09:08 次阅读

化石能源的过度开采和利用导致严重的环境问题和能源危机。可再生能源驱动的电催化二氧化碳还原产生液态燃料和化学物质,有效的实现碳中和能源转化。在众多的还原产物中,甲酸盐是二氧化碳电化学还原具有市场竞争力和经济可行性产物,开发高效电催化二氧化碳还原产甲酸催化剂具有重要研究价值。目前,电催化二氧化碳还原转化体系主要耦合阳极氧析出反应(OER),OER能耗高、产物附加值低。因此,以热动力学有利的氧化反应代替OER耦合电化学二氧化碳还原,超低电压下实现高附加值产物的制备具有重大意义。本文亮点

1.在膜电极中,二氧化碳还原反应(CO₂RR)耦合甲醛氧化反应(FOR)实现了甲酸盐的成对电合成。

2.采用热力学更有利的甲醛氧化反应代替氧析出反应,降低能耗。

3. CO₂RR//FOR 展现出优异的电化学性能(100 mA cm⁻² @ 0.86 V), 甲酸盐质量归一化所消耗的电能为0.413 Wh g⁻¹。

内容简介

开发低槽压、高附加值的二氧化碳还原共电解体系具有重要意义。湖南大学邹雨芹教授等人采用热力学有利的甲醛电氧化耦合阴极二氧化碳还原,实现超低电压下甲酸盐的成对电合成。首先在H池分别评估BiOCl电催化二氧化碳还原及Cu₂O电催化甲醛氧化的性能,宽电压区间甲酸盐的法拉第效率均大于90%。此外,分别在H池、流动池及膜电极组装二氧化碳还原耦合甲醛氧化共电解体系,在膜电极中达到100 mA cm⁻²电流密度仅需要0.86 V,远低于大部分二氧化碳还原耦合小分子电氧化体系。低槽压、高附加值的甲酸盐成对电合成体系成功的构建表明甲醛电氧化代替氧析出反应具有广阔的应用前景。

图文导读

I催化剂的形貌及结构表征

电化学二氧化碳还原产甲酸盐的催化剂为BiOCl。XRD谱图证实BiOCl催化剂成功制备,BiOCl展现出光滑的表面,厚度大约为50 nm。Bi 4f XPS谱图表明BiOCl中Bi以Bi³⁺形式存在。

电化学甲醛氧化的催化剂为Cu₂O,首先用氧气等离子体处理泡沫铜正反两面各5 min, 然后在1 M KOH电解液进行原位电化学还原,-0.4 VRHE还原400秒。Cu俄歇LMM表明Cu以Cu⁺存在。Cu 2p分峰拟合的结果表明,原位电化学还原后Cu²⁺明显下降。

233a12de-6611-11ed-8abf-dac502259ad0.png

图1. 二氧化碳还原和甲酸氧化催化剂的形貌及结构表征。BiOCl和商业化Bi粉(a) XRD谱图,(b) Bi 4f谱图;BiOCl的(c) TEM,(d) SEM,(e) HRTEM,(f) SAED谱图;(g) Cu₂O的TEM 及HRTEM谱图;CuO/Cu₂O及Cu₂O (h) Cu俄歇LMM及(i) Cu 2p谱图。

II阴极CO₂RR电催化性能

电化学二氧化碳还原性能在H池测试。BiOCl及商业化Bi粉在CO₂饱和电解液极化曲线电流密度远高于Ar饱和0.5 M KHCO₃,表明铋基催化剂有利于二氧化碳还原反应而不是氢析出(图2a)。相比于商业化Bi粉,BiOCl展现出更优异二氧化碳还原产甲酸盐性能。同时,BiOCl具有优异稳定性及更小的电荷转移电阻。BiOCl电化学活性面积校正的甲酸盐局部电流密度远高于商业化Bi粉,BiOCl具有更高的本征活性。

流动池结合气体扩散电极打破二氧化碳传质的限制,提高了二氧化碳还原的反应活性。图3a为流动池的示意图。相比于H池,BiOCl在流动池电流密度得到了极大提高(图3b)。BiOCl在-0.48 ~ -1.32 VRHE电压区间具有较高的甲酸盐法拉第效率以及优异的稳定性。

2384aef2-6611-11ed-8abf-dac502259ad0.png

图2. 铋基催化剂在H池中阴极二氧化碳还原电化学性能。(a) BiOCl和商业化Bi粉在Ar或CO₂饱和的0.5 M KHCO₃电解液极化曲线;BiOCl和商业化Bi粉在不同电压下(b)甲酸盐的法拉第效率,(c)甲酸盐的局部电流密度,(d)甲酸盐的产生速率;(e) BiOCl在-0.86 VRHE进行16 h稳定性测试;(f) BiOCl和商业化Bi粉在-0.76 VRHE奈奎斯特图;(g) BiOCl和 (h)商业化Bi粉在不同扫速下的循环伏安曲线;(i)电化学活性面积校正的甲酸盐局部电流密度。

23b84e2e-6611-11ed-8abf-dac502259ad0.png

图3. BiOCl在流动池阴极CO₂RR电化学性能。(a) 流动池示意图;(b) BiOCl在H池和流动池的极化曲线;(c)恒电压电解,(d)电压依赖的甲酸盐法拉第效率从-0.48 ~ -1.32 VRHE;(e) BiOCl在流动池-0.98 VRHE稳定性测试。

III阳极FOR电催化性能

相比于氧析出反应,甲醛电化学氧化形成甲酸盐及氢气是热力学有利的反应,达到100 mA cm⁻²所需要的电压仅为0.238 VRHE(图4a)。在-0.05 ~ 0.35 VRHE电压区间电解直到甲醛完全转化,甲醛电化学氧化形成的甲酸盐浓度在0.25 VRHE达到最大值87.7 mM,还有10.1 mM甲酸盐来源于坎尼扎罗反应。随着电解电压的增加,甲酸盐的形成速率增加,0.35 VRHE甲酸盐的形成速率达到最大值1.48 mmol h⁻¹ cm⁻²。-0.05 ~ 0.35 VRHE电解区间,甲醛电氧化形成甲酸盐的法拉第效率均大于90%。Cu₂O在0.35 VRHE电压下进行连续6次电解测试,甲酸盐法拉第效率几乎均大于90%,证明催化剂具有优异的稳定性。甲醛电化学氧化后, Cu仍以Cu⁺形成存在,Cu⁺/Cu²⁺比例急剧上升,一部分Cu²⁺被还原为Cu⁺。

23fc0ce0-6611-11ed-8abf-dac502259ad0.png

图4. (a) Cu₂O在含有/不含有甲醛1 M KOH电解液中极化曲线;(b) 甲醛电化学氧化所形成的甲酸盐浓度及甲酸盐总产生速率;(c) 不同电压下甲醛完全转化所形成的甲酸盐的法拉第效率;(d) Cu₂O进行连续6次电解循环所产生的甲酸盐法拉第效率;Cu₂O进行甲醛氧化前和甲醛氧化后(e) Cu俄歇LMM及(f) Cu 2p谱图。

IV二氧化碳还原耦合甲醛氧化电化学性能

甲酸盐成对电合成在膜电极进行组装,图5a为甲酸盐成对电合成的示意图。相比于H池,膜电极打破了二氧化碳传质的限制,缩短了阴极和阳极间的距离,降低了内阻。膜电极二氧化碳还原耦合甲醛氧化达到100 mA cm⁻²电流密度仅需0.86 V。在0.3 ~ 1.0 V槽压下电解,二氧化碳还原产甲酸盐及甲醛电氧化产甲酸盐的平均法拉第效率几乎均高于90%。1.0 V槽压下进行10 h稳定性测试,阴极二氧化碳还原和阳极甲醛电氧化产甲酸盐的平均法拉第效率之和高于190%。二氧化碳耦合甲醛氧化提供了一种新型而有效的方法实现超低电压甲酸盐的成对电合成。

2438a0f6-6611-11ed-8abf-dac502259ad0.png

图5. 二氧化碳还原耦合甲醛氧化在膜电极的电化学性能。(a) CO₂RR//FOR在膜电极中示意图;(b) CO₂RR//FOR在H-池和膜电极极化曲线;(c) 恒电压电解,(d) 电压依赖的甲酸盐法拉第效率从0.3-1.0 V;(e) 在1.0 V进行10 h稳定性测试。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电流
    +关注

    关注

    40

    文章

    6891

    浏览量

    132343
  • 可再生能源
    +关注

    关注

    1

    文章

    705

    浏览量

    39556

原文标题:湖南大学邹雨芹NML:二氧化碳还原耦合甲醛氧化,在超低电压下电合成甲酸盐

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    红外 CO2(二氧化碳) 气体传感器和分析模组

    随着科技的进步,人们对于生活以及身体健康关注越来越高。CO2(二氧化碳)是地球大气的重要组成部分,与人类生活息息相关。关注CO2(二氧化碳)气体,监测CO2(二氧化碳)气体至关重要。CO2(
    的头像 发表于 01-07 17:01 53次阅读
    红外 CO2(<b class='flag-5'>二氧化碳</b>) 气体传感器和分析模组

    基于51单片机的二氧化碳浓度检测报警系统仿真

    具体实现功能由51单片机+二氧化碳传感器+LCD1602液晶显示屏+按键+蜂鸣器+指示灯+电源构成。具体功能:(1)二氧化碳传感器测得二氧化碳数据后经过单片机处理,由LCD1602实时
    的头像 发表于 10-22 14:13 192次阅读
    基于51单片机的<b class='flag-5'>二氧化碳</b>浓度检测报警系统仿真

    基于51单片机的二氧化碳浓度检测调节系统仿真

    具体实现功能由51单片机+二氧化碳传感器+LCD1602液晶显示屏+按键+蜂鸣器+指示灯+继电器+风扇+电源构成。具体功能:(1)二氧化碳传感器测得二氧化碳数据后经过单片机处理,由LC
    的头像 发表于 10-22 14:13 169次阅读
    基于51单片机的<b class='flag-5'>二氧化碳</b>浓度检测调节系统仿真

    二氧化碳气体5g网络监测面包棚

    是否有人在安装二氧化碳气体发生器后仍无法看到结果?在这篇文章中,我们将讨论二氧化碳气体的有效应用方法和回顾要点。二氧化碳浓度不均匀的原因在于安装方法。在我访问的生产地区,安装发电机将二氧化碳
    的头像 发表于 05-11 11:18 349次阅读

    温室大棚二氧化碳监测的优势

    随着全球气候变化和农业科技的不断进步,温室大棚作为现代农业生产的重要手段,其内部环境管理变得越来越重要。其中,二氧化碳(CO₂)作为植物光合作用的重要原料,其浓度的监测和控制对于提高温室大棚作物
    的头像 发表于 04-25 16:35 394次阅读

    二氧化碳储能的原理 二氧化碳储能的应用

    二氧化碳储能(CDES)是一种新兴的储能威廉希尔官方网站 ,它基于压缩气体储能的原理,使用二氧化碳(CO2)作为工作介质,通过压缩和膨胀过程实现电能的存储与释放。
    的头像 发表于 04-25 16:06 3677次阅读

    压缩空气储能和二氧化碳储能的区别

    压缩空气储能( CAES)和二氧化碳储能(CDES)是两种不同的储能威廉希尔官方网站 ,它们都利用压缩气体的原理来储存能量,但在工作介质、系统设计、效率以及应用场景等方面存在显著差异。
    的头像 发表于 04-25 16:02 2405次阅读

    百超二氧化碳改光纤3000W威廉希尔官方网站 说明

    百超二氧化碳改光纤3000W威廉希尔官方网站 说明
    发表于 04-23 11:56 0次下载

    尺寸虽小、潜力无限:Sensirion推出创新性微型二氧化碳传感器

    STCC4凭借在外形尺寸上的出众优势、成本效益以及低功耗,可更好地支持一系列面向大众市场提供二氧化碳监测的应用。Sensirion宣布旗下最新款二氧化碳传感器系列将于2024下半年推出。 STCC4
    的头像 发表于 04-12 15:49 1935次阅读
    尺寸虽小、潜力无限:Sensirion推出创新性微型<b class='flag-5'>二氧化碳</b>传感器

    二氧化碳为原料的清洗方式在工业中的应用(

    什么是二氧化碳雪清洗?二氧化碳雪清洗是二氧化碳清洗的表现形式之一,是除干冰粒清洗以外的二氧化碳清洗创新威廉希尔官方网站 。无论是干冰清洗还是二氧化碳雪清洗
    的头像 发表于 03-15 19:59 192次阅读
    以<b class='flag-5'>二氧化碳</b>为原料的清洗方式在工业中的应用(<b class='flag-5'>二</b>)

    二氧化碳为原料的清洗方式在工业中的应用(一)

    二氧化碳为基础原料的清洗正在经历前所未有的迅猛发展,基于二氧化碳的特性,目前在清洗领域中二氧化碳被用于以下4个方面:1、将二氧化碳预制成高密度干冰粒或干冰粉(以下统称干冰粒)的干冰清
    的头像 发表于 03-07 13:09 391次阅读
    以<b class='flag-5'>二氧化碳</b>为原料的清洗方式在工业中的应用(一)

    二氧化碳传感器的分类及其原理

    传感器的分类及其工作原理。 二氧化碳传感器可以根据其传感原理的不同分为以下几类: 1. 电化学传感器: 电化学传感器是利用电化学反应来检测环境中二氧化碳浓度的传感器。最常见的电化学传感器是基于氧化
    的头像 发表于 03-06 14:58 2013次阅读

    二氧化碳雪清洗威廉希尔官方网站 在芯片制造中的关键突破

    二氧化碳雪清洗作为一种新型的清洗方法,在芯片制造领域具有广阔的应用前景。通过将高压液态二氧化碳释放,得到微米级固相二氧化碳颗粒,并与高压气体混合形成动能,可以有效地冲击晶粒表面,去除微米级和亚微米级
    的头像 发表于 02-27 12:14 234次阅读
    <b class='flag-5'>二氧化碳</b>雪清洗威廉希尔官方网站
在芯片制造中的关键突破

    二氧化碳气体保护焊怎么调电流电压

    调节电流和电压是进行二氧化碳气体保护焊的关键步骤之一。正确地调整电流和电压可以保证焊接过程顺利进行,焊缝质量良好。本文将详细介绍如何调节电流和电压来进行二氧化碳气体保护焊。 了解焊接参数的含义 在
    的头像 发表于 01-18 10:37 2452次阅读