0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

张氏标定法的原理和实现

jt_rfid5 来源:CSDN 作者:weixin_39717692 2022-11-14 10:14 次阅读

张正友相机标定法是张正友教授1998年提出的单平面棋盘格的相机标定方法。传统标定法的标定板是需要三维的,需要非常精确,这很难制作,而张正友教授提出的方法介于传统标定法和自标定法之间,但克服了传统标定法需要的高精度标定物的缺点,而仅需使用一个打印出来的棋盘格就可以。同时也相对于自标定而言,提高了精度,便于操作。因此张氏标定法被广泛应用于计算机视觉方面。

传统标定法的的标定板

a4cfcda4-6362-11ed-8abf-dac502259ad0.png

张正友标定法的标定板

今天,我们就来讲解一下张氏标定法的原理和实现,学会之后,我们就可以自己去制作一个棋盘标定板,然后拍照,标定自己手机相机的参数啦!

一、相机标定介绍

二、算法原理

1.整体流程

2.模型假设

3.模型求解

(1)内外参数求解

(2)畸变系数求解

(3)精度优化

三、算法实现

1.main.py

2.homography.py

4.extrinsics.py

5.distortion.py

6.refine_all.py

7.结果

一、相机标定介绍

相机标定指建立相机图像像素位置与场景点位置之间的关系,根据相机成像模型,由特征点在图像中坐标与世界坐标的对应关系,求解相机模型的参数。相机需要标定的模型参数包括内部参数和外部参数。

针孔相机成像原理其实就是利用投影将真实的三维世界坐标转换到二维的相机坐标上去,其模型示意图如下图所示:

a4df7dda-6362-11ed-8abf-dac502259ad0.png

从图中我们可以看出,在世界坐标中的一条直线上的点在相机上只呈现出了一个点,其中发生了非常大的变化,同时也损失和很多重要的信息,这正是我们3D重建、目标检测与识别领域的重点和难点。实际中,镜头并非理想的透视成像,带有不同程度的畸变。理论上镜头的畸变包括径向畸变和切向畸变,切向畸变影响较小,通常只考虑径向畸变。

径向畸变:径向畸变主要由镜头径向曲率产生(光线在远离透镜中心的地方比靠近中心的地方更加弯曲)。导致真实成像点向内或向外偏离理想成像点。其中畸变像点相对于理想像点沿径向向外偏移,远离中心的,称为枕形畸变;径向畸点相对于理想点沿径向向中心靠拢,称为桶状畸变。

用数学公式来表示:

a548bb06-6362-11ed-8abf-dac502259ad0.png

其中,X为相机中的坐标;X为真实世界坐标;K为内参矩阵;RT为外参矩阵 K为内参矩阵,是相机内部参数组成的一个3*3的矩阵,其中,代表焦距;S为畸变参数为中心点坐标,a为纵横比例参数,我们可以默认设为1,所以 RT为外参矩阵,R是描述照相机方向的旋转矩阵,T是描述照相机中心位置的三维平移向量。

二、算法原理

1.整体流程

a5682806-6362-11ed-8abf-dac502259ad0.png

2.模型假设

a57c7b4e-6362-11ed-8abf-dac502259ad0.png

a58eab2a-6362-11ed-8abf-dac502259ad0.png

a5a299f0-6362-11ed-8abf-dac502259ad0.png

a5bd0664-6362-11ed-8abf-dac502259ad0.png

3.模型求解

(1)内外参数求解

我们令,则

其中,H为一个3*3的矩阵,并且有一个元素作为齐次坐标。因此,H有8个自由度。

现在有8个自由度需要求解,所以需要四个对应点。也就是四个点就可以求出图像平面到世界平面的单应性矩阵H。

我想,张氏标定法选用的棋盘格作为标定板的原因除了角点方便检测的另外一个原因可能就是这个吧。

通过4个点,我们就可以可以获得单应性矩阵H。但是,H是内参阵和外参阵的合体。我们想要最终分别获得内参和外参。所以需要想个办法,先把内参求出来。然后外参也就随之解出了。观察一下这个式子:

我们可以知道以下约束条件:

①,R1R2 正交,也就是说 R1 R2=0。其实这个不难理解,因为 R1 R2 是分别绕x轴和y轴得到的,而x轴和y轴均垂直z轴。

②旋转向量的模为1,也就是说R1=R2=1,这是因为旋转不改变尺度。

根据这两个约束条件,经过数学变换,我们可以得到:

观察上面的两个式子,我们可以看出,由于H1和H2是通过单应性求解出来的,所以我们要求解的参数就变成A矩阵中未知的5个参数。我们可以通过三个单应性矩阵来求解这5个参数,利用三个单应性矩阵在两个约束下可以生成6个方程。其中,三个单应性矩阵可以通过三张对同一标定板不同角度和高度的照片获得。

用数学公式来表达如下:

我们很容易发现B是一个对称阵,所以B的有效元素就剩下6个,即

进一步化简:

通过计算,我们可以得到

a5d514d4-6362-11ed-8abf-dac502259ad0.png

利用上面提到的两个约束条件,我们可以得到下面的方程组:

a5e9de8c-6362-11ed-8abf-dac502259ad0.png

这个方程组的本质和前面那两个用h和A组成的约束条件方程组是一样的。

通过至少含一个棋盘格的三幅图像,应用上述公式我们就可以估算出B了。得到B后,我们通过cholesky分解,就可以得到摄相机机的内参阵A的六个自由度,即:

a5fed012-6362-11ed-8abf-dac502259ad0.png

再根据a611067e-6362-11ed-8abf-dac502259ad0.png化简可得外部参数,即:

a625a5ca-6362-11ed-8abf-dac502259ad0.png

(2)畸变系数求解

在文章的开始,我们就讲到真实的镜头并非理想的透视成像,而是带有不同程度的畸变。理论上镜头的畸变包括径向畸变和切向畸变,切向畸变影响较小,通常只考虑径向畸变,而且在径向畸变的求解中,仅考虑了起主导的二元泰勒级数展开的前两个系数。

具体推导,参考https://blog.csdn.net/onthewaysuccess/article/details/40736177

(3)精度优化

在张正友标定法中,使用了两次极大似然估计策略,第一次是在不考虑畸变的情况下求解内参和外参,第二次是求解实际的畸变系数。

极大似然参数估计,参考https://blog.csdn.net/onthewaysuccess/article/details/40717213

三、算法实现

1.main.py

#!usr/bin/env/ python

# _*_ coding:utf-8 _*_

import cv2 as cv

import numpy as np

import os

from step.homography import get_homography

from step.intrinsics import get_intrinsics_param

from step.extrinsics import get_extrinsics_param

from step.distortion import get_distortion

from step.refine_all import refinall_all_param

def calibrate():

#求单应矩阵

H = get_homography(pic_points, real_points_x_y)

#求内参

intrinsics_param = get_intrinsics_param(H)

#求对应每幅图外参

extrinsics_param = get_extrinsics_param(H, intrinsics_param)

#畸变矫正

k = get_distortion(intrinsics_param, extrinsics_param, pic_points, real_points_x_y)

#微调所有参数

[new_intrinsics_param, new_k, new_extrinsics_param] = refinall_all_param(intrinsics_param,

k, extrinsics_param, real_points, pic_points)

print("intrinsics_parm: ", new_intrinsics_param)

print("distortionk: ", new_k)

print("extrinsics_parm: ", new_extrinsics_param)

if __name__ == "__main__":

file_dir = r'..pic'

# 标定所用图像

pic_name = os.listdir(file_dir)

# 由于棋盘为二维平面,设定世界坐标系在棋盘上,一个单位代表一个棋盘宽度,产生世界坐标系三维坐标

cross_corners = [9, 6] #棋盘方块交界点排列

real_coor = np.zeros((cross_corners[0] * cross_corners[1], 3), np.float32)

real_coor[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)

real_points = []

real_points_x_y = []

pic_points = []

for pic in pic_name:

pic_path = os.path.join(file_dir, pic)

pic_data = cv.imread(pic_path)

# 寻找到棋盘角点

succ, pic_coor = cv.findChessboardCorners(pic_data, (cross_corners[0], cross_corners[1]), None)

if succ:

# 添加每幅图的对应3D-2D坐标

pic_coor = pic_coor.reshape(-1, 2)

pic_points.append(pic_coor)

real_points.append(real_coor)

real_points_x_y.append(real_coor[:, :2])

calibrate()

2.homography.py

这是用于求解单应性矩阵的文件

#!usr/bin/env/ python

# _*_ coding:utf-8 _*_

import numpy as np

from scipy import optimize as opt

#求输入数据的归一化矩阵

def normalizing_input_data(coor_data):

x_avg = np.mean(coor_data[:, 0])

y_avg = np.mean(coor_data[:, 1])

sx = np.sqrt(2) / np.std(coor_data[:, 0])

sy = np.sqrt(2) / np.std(coor_data[:, 1])

norm_matrix = np.matrix([[sx, 0, -sx * x_avg],

[0, sy, -sy * y_avg],

[0, 0, 1]])

return norm_matrix

#求取初始估计的单应矩阵

def get_initial_H(pic_coor, real_coor):

# 获得归一化矩阵

pic_norm_mat = normalizing_input_data(pic_coor)

real_norm_mat = normalizing_input_data(real_coor)

M = []

for i in range(len(pic_coor)):

#转换为齐次坐标

single_pic_coor = np.array([pic_coor[i][0], pic_coor[i][1], 1])

single_real_coor = np.array([real_coor[i][0], real_coor[i][1], 1])

#坐标归一化

pic_norm = np.dot(pic_norm_mat, single_pic_coor)

real_norm = np.dot(real_norm_mat, single_real_coor)

#构造M矩阵

M.append(np.array([-real_norm.item(0), -real_norm.item(1), -1,

0, 0, 0,

pic_norm.item(0) * real_norm.item(0), pic_norm.item(0) * real_norm.item(1), pic_norm.item(0)]))

M.append(np.array([0, 0, 0,

-real_norm.item(0), -real_norm.item(1), -1,

pic_norm.item(1) * real_norm.item(0), pic_norm.item(1) * real_norm.item(1), pic_norm.item(1)]))

#利用SVD求解M * h = 0中h的解

U, S, VT = np.linalg.svd((np.array(M, dtype='float')).reshape((-1, 9)))

# 最小的奇异值对应的奇异向量,S求出来按大小排列的,最后的最小

H = VT[-1].reshape((3, 3))

H = np.dot(np.dot(np.linalg.inv(pic_norm_mat), H), real_norm_mat)

H /= H[-1, -1]

return H

#返回估计坐标与真实坐标偏差

def value(H, pic_coor, real_coor):

Y = np.array([])

for i in range(len(real_coor)):

single_real_coor = np.array([real_coor[i, 0], real_coor[i, 1], 1])

U = np.dot(H.reshape(3, 3), single_real_coor)

U /= U[-1]

Y = np.append(Y, U[:2])

Y_NEW = (pic_coor.reshape(-1) - Y)

return Y_NEW

#返回对应jacobian矩阵

def jacobian(H, pic_coor, real_coor):

J = []

for i in range(len(real_coor)):

sx = H[0]*real_coor[i][0] + H[1]*real_coor[i][1] +H[2]

sy = H[3]*real_coor[i][0] + H[4]*real_coor[i][1] +H[5]

w = H[6]*real_coor[i][0] + H[7]*real_coor[i][1] +H[8]

w2 = w * w

J.append(np.array([real_coor[i][0]/w, real_coor[i][1]/w, 1/w,

0, 0, 0,

-sx*real_coor[i][0]/w2, -sx*real_coor[i][1]/w2, -sx/w2]))

J.append(np.array([0, 0, 0,

real_coor[i][0]/w, real_coor[i][1]/w, 1/w,

-sy*real_coor[i][0]/w2, -sy*real_coor[i][1]/w2, -sy/w2]))

return np.array(J)

#利用Levenberg Marquart算法微调H

def refine_H(pic_coor, real_coor, initial_H):

initial_H = np.array(initial_H)

final_H = opt.leastsq(value,

initial_H,

Dfun=jacobian,

args=(pic_coor, real_coor))[0]

final_H /= np.array(final_H[-1])

return final_H

#返回微调后的H

def get_homography(pic_coor, real_coor):

refined_homographies =[]

error = []

for i in range(len(pic_coor)):

initial_H = get_initial_H(pic_coor[i], real_coor[i])

final_H = refine_H(pic_coor[i], real_coor[i], initial_H)

refined_homographies.append(final_H)

return np.array(refined_homographies)

3.intrinsics.py

这是用于求解内参矩阵的文件

#!usr/bin/env/ python

# _*_ coding:utf-8 _*_

import numpy as np

#返回pq位置对应的v向量

def create_v(p, q, H):

H = H.reshape(3, 3)

return np.array([

H[0, p] * H[0, q],

H[0, p] * H[1, q] + H[1, p] * H[0, q],

H[1, p] * H[1, q],

H[2, p] * H[0, q] + H[0, p] * H[2, q],

H[2, p] * H[1, q] + H[1, p] * H[2, q],

H[2, p] * H[2, q]

])

#返回相机内参矩阵A

def get_intrinsics_param(H):

#构建V矩阵

V = np.array([])

for i in range(len(H)):

V = np.append(V, np.array([create_v(0, 1, H[i]), create_v(0, 0 , H[i])- create_v(1, 1 , H[i])]))

#求解V*b = 0中的b

U, S, VT = np.linalg.svd((np.array(V, dtype='float')).reshape((-1, 6)))

#最小的奇异值对应的奇异向量,S求出来按大小排列的,最后的最小

b = VT[-1]

#求取相机内参

w = b[0] * b[2] * b[5] - b[1] * b[1] * b[5] - b[0] * b[4] * b[4] + 2 * b[1] * b[3] * b[4] - b[2] * b[3] * b[3]

d = b[0] * b[2] - b[1] * b[1]

alpha = np.sqrt(w / (d * b[0]))

beta = np.sqrt(w / d**2 * b[0])

gamma = np.sqrt(w / (d**2 * b[0])) * b[1]

uc = (b[1] * b[4] - b[2] * b[3]) / d

vc = (b[1] * b[3] - b[0] * b[4]) / d

return np.array([

[alpha, gamma, uc],

[0, beta, vc],

[0, 0, 1]

])

4.extrinsics.py

这是用于求解外参矩阵的文件

#!usr/bin/env/ python

# _*_ coding:utf-8 _*_

import numpy as np

#返回每一幅图的外参矩阵[R|t]

def get_extrinsics_param(H, intrinsics_param):

extrinsics_param = []

inv_intrinsics_param = np.linalg.inv(intrinsics_param)

for i in range(len(H)):

h0 = (H[i].reshape(3, 3))[:, 0]

h1 = (H[i].reshape(3, 3))[:, 1]

h2 = (H[i].reshape(3, 3))[:, 2]

scale_factor = 1 / np.linalg.norm(np.dot(inv_intrinsics_param, h0))

r0 = scale_factor * np.dot(inv_intrinsics_param, h0)

r1 = scale_factor * np.dot(inv_intrinsics_param, h1)

t = scale_factor * np.dot(inv_intrinsics_param, h2)

r2 = np.cross(r0, r1)

R = np.array([r0, r1, r2, t]).transpose()

extrinsics_param.append(R)

return extrinsics_param

5.distortion.py

这是用于求解畸变矫正系数的文件

#!usr/bin/env/ python

# _*_ coding:utf-8 _*_

import numpy as np

#返回畸变矫正系数k0,k1

def get_distortion(intrinsic_param, extrinsic_param, pic_coor, real_coor):

D = []

d = []

for i in range(len(pic_coor)):

for j in range(len(pic_coor[i])):

#转换为齐次坐标

single_coor = np.array([(real_coor[i])[j, 0], (real_coor[i])[j, 1], 0, 1])

#利用现有内参及外参求出估计图像坐标

u = np.dot(np.dot(intrinsic_param, extrinsic_param[i]), single_coor)

[u_estim, v_estim] = [u[0]/u[2], u[1]/u[2]]

coor_norm = np.dot(extrinsic_param[i], single_coor)

coor_norm /= coor_norm[-1]

#r = np.linalg.norm((real_coor[i])[j])

r = np.linalg.norm(coor_norm)

D.append(np.array([(u_estim - intrinsic_param[0, 2]) * r ** 2, (u_estim - intrinsic_param[0, 2]) * r ** 4]))

D.append(np.array([(v_estim - intrinsic_param[1, 2]) * r ** 2, (v_estim - intrinsic_param[1, 2]) * r ** 4]))

#求出估计坐标与真实坐标的残差

d.append(pic_coor[i][j, 0] - u_estim)

d.append(pic_coor[i][j, 1] - v_estim)

'''

D.append(np.array([(pic_coor[i][j, 0] - intrinsic_param[0, 2]) * r ** 2, (pic_coor[i][j, 0] - intrinsic_param[0, 2]) * r ** 4]))

D.append(np.array([(pic_coor[i][j, 1] - intrinsic_param[1, 2]) * r ** 2, (pic_coor[i][j, 1] - intrinsic_param[1, 2]) * r ** 4]))

#求出估计坐标与真实坐标的残差

d.append(u_estim - pic_coor[i][j, 0])

d.append(v_estim - pic_coor[i][j, 1])

'''

D = np.array(D)

temp = np.dot(np.linalg.inv(np.dot(D.T, D)), D.T)

k = np.dot(temp, d)

'''

#也可利用SVD求解D * k = d中的k

U, S, Vh=np.linalg.svd(D, full_matrices=False)

temp_S = np.array([[S[0], 0],

[0, S[1]]])

temp_res = np.dot(Vh.transpose(), np.linalg.inv(temp_S))

temp_res_res = np.dot(temp_res, U.transpose())

k = np.dot(temp_res_res, d)

'''

return k

6.refine_all.py

这是用于微调参数的文件

#!usr/bin/env/ python

# _*_ coding:utf-8 _*_

import numpy as np

import math

from scipy import optimize as opt

#微调所有参数

def refinall_all_param(A, k, W, real_coor, pic_coor):

#整合参数

P_init = compose_paramter_vector(A, k, W)

#复制一份真实坐标

X_double = np.zeros((2 * len(real_coor) * len(real_coor[0]), 3))

Y = np.zeros((2 * len(real_coor) * len(real_coor[0])))

M = len(real_coor)

N = len(real_coor[0])

for i in range(M):

for j in range(N):

X_double[(i * N + j) * 2] = (real_coor[i])[j]

X_double[(i * N + j) * 2 + 1] = (real_coor[i])[j]

Y[(i * N + j) * 2] = (pic_coor[i])[j, 0]

Y[(i * N + j) * 2 + 1] = (pic_coor[i])[j, 1]

#微调所有参数

P = opt.leastsq(value,

P_init,

args=(W, real_coor, pic_coor),

Dfun=jacobian)[0]

#raial_error表示利用标定后的参数计算得到的图像坐标与真实图像坐标点的平均像素距离

error = value(P, W, real_coor, pic_coor)

raial_error = [np.sqrt(error[2 * i]**2 + error[2 * i + 1]**2) for i in range(len(error) // 2)]

print("total max error: ", np.max(raial_error))

#返回拆解后参数,分别为内参矩阵,畸变矫正系数,每幅图对应外参矩阵

return decompose_paramter_vector(P)

#把所有参数整合到一个数组内

def compose_paramter_vector(A, k, W):

alpha = np.array([A[0, 0], A[1, 1], A[0, 1], A[0, 2], A[1, 2], k[0], k[1]])

P = alpha

for i in range(len(W)):

R, t = (W[i])[:, :3], (W[i])[:, 3]

#旋转矩阵转换为一维向量形式

zrou = to_rodrigues_vector(R)

w = np.append(zrou, t)

P = np.append(P, w)

return P

#分解参数集合,得到对应的内参,外参,畸变矫正系数

def decompose_paramter_vector(P):

[alpha, beta, gamma, uc, vc, k0, k1] = P[0:7]

A = np.array([[alpha, gamma, uc],

[0, beta, vc],

[0, 0, 1]])

k = np.array([k0, k1])

W = []

M = (len(P) - 7) // 6

for i in range(M):

m = 7 + 6 * i

zrou = P[m:m+3]

t = (P[m+3:m+6]).reshape(3, -1)

#将旋转矩阵一维向量形式还原为矩阵形式

R = to_rotation_matrix(zrou)

#依次拼接每幅图的外参

w = np.concatenate((R, t), axis=1)

W.append(w)

W = np.array(W)

return A, k, W

#返回从真实世界坐标映射的图像坐标

def get_single_project_coor(A, W, k, coor):

single_coor = np.array([coor[0], coor[1], coor[2], 1])

#'''

coor_norm = np.dot(W, single_coor)

coor_norm /= coor_norm[-1]

#r = np.linalg.norm(coor)

r = np.linalg.norm(coor_norm)

uv = np.dot(np.dot(A, W), single_coor)

uv /= uv[-1]

#畸变

u0 = uv[0]

v0 = uv[1]

uc = A[0, 2]

vc = A[1, 2]

#u = (uc * r**2 * k[0] + uc * r**4 * k[1] - u0) / (r**2 * k[0] + r**4 * k[1] - 1)

#v = (vc * r**2 * k[0] + vc * r**4 * k[1] - v0) / (r**2 * k[0] + r**4 * k[1] - 1)

u = u0 + (u0 - uc) * r**2 * k[0] + (u0 - uc) * r**4 * k[1]

v = v0 + (v0 - vc) * r**2 * k[0] + (v0 - vc) * r**4 * k[1]

'''

uv = np.dot(W, single_coor)

uv /= uv[-1]

# 透镜矫正

x0 = uv[0]

y0 = uv[1]

r = np.linalg.norm(np.array([x0, y0]))

k0 = 0

k1 = 0

x = x0 * (1 + r ** 2 * k0 + r ** 4 * k1)

y = y0 * (1 + r ** 2 * k0 + r ** 4 * k1)

#u = A[0, 0] * x + A[0, 2]

#v = A[1, 1] * y + A[1, 2]

[u, v, _] = np.dot(A, np.array([x, y, 1]))

'''

return np.array([u, v])

#返回所有点的真实世界坐标映射到的图像坐标与真实图像坐标的残差

def value(P, org_W, X, Y_real):

M = (len(P) - 7) // 6

N = len(X[0])

A = np.array([

[P[0], P[2], P[3]],

[0, P[1], P[4]],

[0, 0, 1]

])

Y = np.array([])

for i in range(M):

m = 7 + 6 * i

#取出当前图像对应的外参

w = P[m:m + 6]

# 不用旋转矩阵的变换是因为会有精度损失

'''

R = to_rotation_matrix(w[:3])

t = w[3:].reshape(3, 1)

W = np.concatenate((R, t), axis=1)

'''

W = org_W[i]

#计算每幅图的坐标残差

for j in range(N):

Y = np.append(Y, get_single_project_coor(A, W, np.array([P[5], P[6]]), (X[i])[j]))

error_Y = np.array(Y_real).reshape(-1) - Y

return error_Y

#计算对应jacobian矩阵

def jacobian(P, WW, X, Y_real):

M = (len(P) - 7) // 6

N = len(X[0])

K = len(P)

A = np.array([

[P[0], P[2], P[3]],

[0, P[1], P[4]],

[0, 0, 1]

])

res = np.array([])

for i in range(M):

m = 7 + 6 * i

w = P[m:m + 6]

R = to_rotation_matrix(w[:3])

t = w[3:].reshape(3, 1)

W = np.concatenate((R, t), axis=1)

for j in range(N):

res = np.append(res, get_single_project_coor(A, W, np.array([P[5], P[6]]), (X[i])[j]))

#求得x, y方向对P[k]的偏导

J = np.zeros((K, 2 * M * N))

for k in range(K):

J[k] = np.gradient(res, P[k])

return J.T

#将旋转矩阵分解为一个向量并返回,Rodrigues旋转向量与矩阵的变换,最后计算坐标时并未用到,因为会有精度损失

def to_rodrigues_vector(R):

p = 0.5 * np.array([[R[2, 1] - R[1, 2]],

[R[0, 2] - R[2, 0]],

[R[1, 0] - R[0, 1]]])

c = 0.5 * (np.trace(R) - 1)

if np.linalg.norm(p) == 0:

if c == 1:

zrou = np.array([0, 0, 0])

elif c == -1:

R_plus = R + np.eye(3, dtype='float')

norm_array = np.array([np.linalg.norm(R_plus[:, 0]),

np.linalg.norm(R_plus[:, 1]),

np.linalg.norm(R_plus[:, 2])])

v = R_plus[:, np.where(norm_array == max(norm_array))]

u = v / np.linalg.norm(v)

if u[0] < 0 or (u[0] == 0 and u[1] < 0) or (u[0] == u[1] and u[0] == 0 and u[2] < 0):

u = -u

zrou = math.pi * u

else:

zrou = []

else:

u = p / np.linalg.norm(p)

theata = math.atan2(np.linalg.norm(p), c)

zrou = theata * u

return zrou

#把旋转矩阵的一维向量形式还原为旋转矩阵并返回

def to_rotation_matrix(zrou):

theta = np.linalg.norm(zrou)

zrou_prime = zrou / theta

W = np.array([[0, -zrou_prime[2], zrou_prime[1]],

[zrou_prime[2], 0, -zrou_prime[0]],

[-zrou_prime[1], zrou_prime[0], 0]])

R = np.eye(3, dtype='float') + W * math.sin(theta) + np.dot(W, W) * (1 - math.cos(theta))

return R

7.结果

拍摄的不同角度,不同高度的图像

a639fb38-6362-11ed-8abf-dac502259ad0.png

运行结果:

a65ce8c8-6362-11ed-8abf-dac502259ad0.png

拍照的手机是华为p9,后置摄像头是1200万像素。

内部参数矩阵是为:

[ 9.95397796e+02, -5.74043156e+00, 5.30659959e+02, 0.00000000e+00, 1.04963119e+03, 6.55565437e+02, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]

因为代码是以一个方格为一个单位,没有考虑单位长度,所以要求真实的参数应该乘一个单位长度,博主采用的方格的尺寸是2.98cm的,自己拿excel画的,get了一个新技能~~

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 手机
    +关注

    关注

    35

    文章

    6864

    浏览量

    157512
  • 计算机
    +关注

    关注

    19

    文章

    7460

    浏览量

    87811

原文标题:三、算法实现

文章出处:【微信号:今日光电,微信公众号:今日光电】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    传感器静态标定的主要步骤是什么

    传感器静态标定的主要步骤通常包括以下几个方面: 一、准备阶段 确定标定范围 :首先,需要明确传感器的全量程(即测量范围),这是标定工作的基础。 准备标准设备 :利用标准仪器或设备产生已知的非电量(如
    的头像 发表于 09-19 17:02 1128次阅读

    基于CW32的仪表精度测量实现(三):标定与校准

    标定的概念 标定是一种校准过程,它通过与已知的标准或参考值进行比较来确保测量设备、仪器或系统的准确性和可靠性。这个过程涉及调整设备,以消除系统误差和提高测量结果与真实值的一致性,从而确保数据的精确度
    的头像 发表于 09-02 10:07 307次阅读
    基于CW32的仪表精度测量<b class='flag-5'>实现</b>(三):<b class='flag-5'>标定</b>与校准

    基于DCC和标定的相机镜头畸变校正

    电子发烧友网站提供《基于DCC和标定的相机镜头畸变校正.pdf》资料免费下载
    发表于 08-29 10:37 0次下载
    基于DCC和<b class='flag-5'>张</b><b class='flag-5'>氏</b><b class='flag-5'>标定</b>的相机镜头畸变校正

    桥振荡器的原理和应用

    桥振荡器(Wien Bridge Oscillator),又称文电桥振荡电路或RC桥式正弦波振荡器,是一种基于RC串并联网络实现的振荡电路,由德国物理学家Max Wien在1891年发明。这种振荡器在电子通信、信号处理、科
    的头像 发表于 07-30 18:06 2170次阅读

    平行电流线对罗线圈的影响

    在电力系统和电子测量领域,罗线圈(Rogowski Coil)是一种常用的非接触式电流测量装置,它通过感应被测电流产生的磁场来测量电流的大小。然而,当罗线圈附近存在平行电流线时,这些平行电流线
    的头像 发表于 07-16 11:30 952次阅读
    平行电流线对罗<b class='flag-5'>氏</b>线圈的影响

    线圈电流传感器的工作原理、结构特点及应用

    传感器的工作原理 电磁感应原理 罗线圈电流传感器的工作原理基于电磁感应原理。当导体中的电流发生变化时,会在其周围产生变化的磁场。这个变化的磁场会在线圈中产生感应电动势,从而实现对电流的测量。 罗线圈的结构 罗
    的头像 发表于 07-12 15:29 1.7w次阅读

    线圈输出是什么信号

    线圈(Rogowski Coil)是一种用于测量电流的电磁感应器件,广泛应用于电力系统、电气设备和电子测量等领域。罗线圈的输出信号是电压信号,其大小与通过线圈的电流变化率成正比。 一、罗线圈
    的头像 发表于 07-12 15:06 765次阅读

    线圈可以测直流吗

    线圈(Rogowski coil),又称为罗戈夫斯基线圈或罗电流传感器,是一种用于测量电流的电磁感应装置。它具有结构简单、响应速度快、测量范围广等优点,在电力系统、工业自动化、科研等领域得到
    的头像 发表于 07-12 15:03 1063次阅读

    线圈为什么要用积分器呢?

    导线组成的线圈,当通过罗线圈的电流发生变化时,会形成磁场。这个磁场会导致线圈中的电压发生变化,产生自感电动势。自感电动势的大小和电流变化的速率成正比。 在电子电路中,罗线圈常用于实现信号的滤波和积分功能。滤
    的头像 发表于 01-08 13:50 1342次阅读

    线圈输出是什么信号 罗线圈可以测直流吗

    线圈输出是什么信号 罗线圈可以测直流吗  罗线圈作为一种常见的电感元件,在电路中具有广泛的应用。它可以用于进行信号变换、滤波、放大等电路设计中,以及直流电流的测量。 首先,我们来了解一下罗
    的头像 发表于 01-05 15:08 1202次阅读

    一文带你认识柔性电流探头(罗线圈)

    设计具有较低的插入阻抗,从而实现了更快的信号响应和非常线性的信号电压。   在载流导线周围环形放置一个空芯线圈,交流电流产生的磁场在线圈中感应电压。罗线圈产生的电压与线圈回路封闭的电流的变化率(导数
    发表于 12-28 10:57

    ADE7753接罗线圈的的条件是什么?

    我在使用ADE7753和罗线圈测量电流的时候,看ADE7753手册里面讲最大接到管脚上的电压是0.5V,可是我将罗线圈挂到电流母线上输出的波形如下 显然不满足,我应该怎么办呢?
    发表于 12-27 06:10

    ADE7816怎么和罗线圈传感器连接?

    1. 想问一下计量芯片ADE7816怎么和罗线圈传感器连接的?罗线圈传感器是在计量芯片ADE7816外面和它连接吗? 2. 罗线圈能不能用交流互感器代替?如果可以可以用交流互感器代替,那交流
    发表于 12-26 06:55

    什么是电机电控标定?到底标的啥?

    什么是电机电控标定?到底标的啥? 电机电控标定是指对电机和电控系统进行精确的参数设定和校准的过程。这个过程旨在确保电机和电控系统能够以准确可靠的方式工作,并实现所需的性能和功能。标定
    的头像 发表于 12-25 11:47 3965次阅读

    线圈和电流探头的区别?

    线圈(Rogowski Coil)是一种非接触式电流传感器,由罗线圈和信号处理部分组成。罗线圈是一种线圈形状的传感器,由许多可弯曲的平面线圈均匀绕制而成,通常由橡胶管绕制而成。当电流通过被测电线时,在罗
    的头像 发表于 12-12 09:57 1281次阅读
    罗<b class='flag-5'>氏</b>线圈和电流探头的区别?