0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

氢空位缺陷对于杂化钙钛矿太阳能电池能量转换效率

鸿之微 来源:鸿之微 作者:鸿之微 2022-10-13 16:37 次阅读

随着煤炭、石油和天然气等能源的逐渐枯竭,以及这些能源使用过程中所带来的环境污染,寻找清洁、高效的新能源迫在眉睫。这其中太阳能无疑是首选的方案之一。而要实现太阳能的高效转化和利用,设计优异的太阳能电池材料是关键。作为最有潜力的新型太阳能电池材料之一,杂化钙钛矿因其优异的能量转换效率和低廉的生产成本受到了广泛的关注。当前大量的科学家仍在为进一步提高钙钛矿太阳能电池的效率不懈努力。而实现这一目标的关键是厘清杂化钙钛矿在将太阳能转换成电能过程中能量的微观损失机制。

近日,北京计算科学研究中心张燮教授与美国加州大学圣芭芭拉分校ChrisG. Van de Walle院士最新的研究发现部分氢原子的缺失(即氢空位缺陷的形成)是限制杂化钙钛矿效率提升的关键因素。

当太阳光照在太阳能电池板上,位于电池材料价带中的电子会吸收光子的能量跃迁到导带中,从而形成了电子和空穴对,统称为载流子。太阳能电池的目标是尽可能多地将电子和空穴捕捉到,并将其转换成电流,实现光能向电能的转换。然而,电子和空穴也会重新结合,释放出光或者使材料发热,造成能量的损失;该过程称为载流子复合。通过近年来对载流子复合过程的系统研究,该团队首先确定了电子和空穴通过材料的点缺陷发生非辐射复合是导致杂化钙钛矿太阳能电池能量损失的主要原因(X. Zhang et al., Adv. Energy Mater. 10, 1902830 (2020))。那么,找到这些有害的缺陷就成为了进一步提高效率的关键。

图1展示了最典型的杂化钙钛矿MAPbI3(MA:CH3NH3)的晶体结构。过去众多的缺陷研究往往将MA分子看作是一个不可分割的整体,分析与MA相关的空穴、间隙以及反位缺陷。但实际上,MA分子内部还可以细分,形成其他的点缺陷。最为直接的当属氢原子空位。通过将C原子或者N原子周围的一个氢原子移除,可形成两种氢空位缺陷:VH(C)和VH(N)。精确的量子力学第一性原理计算表明:VH(N)缺陷不但容易形成,而且会导致非常强的电子和空穴的非辐射复合,将光能转换成了声子,即让材料发热(如图1红色箭头所示),显著影响了MAPbI3的能量转换效率。

bd481f94-4a0d-11ed-a3b6-dac502259ad0.png

图1最典型的杂化钙钛矿MAPbI3的晶体结构及其氢空位[VH(N)]缺陷的形成。“–”和“+”分别代表电子和空穴。红色箭头指代声子。

如图2a所示,在体系处于贫碘、贫氢的条件下时,由于体系总体需保持电中性,费米能级(EFpin)主要由VH–(N)和VI+所决定(图2a黑色虚线)。此时,VH–(N)的形成能非常低,这就意味着它在MAPbI3中较容易形成。图2b绘制了VH(N)在改变电荷态时,其势能曲面随着构型坐标的变化。从该结果可以看出,VH(N)在通过改变电荷态实现电子或空穴的捕捉时,势垒都非常小,相应的捕捉系数将会非常高。图2c通过量子力学精确计算了电子、空穴及总的非辐射捕捉系数。由此可以发现:VH(N)在室温下总的非辐射载流子捕捉系数竟高达10–4cm3s–1,比常见深能级缺陷的非辐射捕捉系数高出了3–4个数量级。这说明一旦该缺陷在MAPbI3中形成,它会将吸收的太阳能大量地转换成材料的发热,从而显著降低钙钛矿太阳能电池的转换效率。

be63b2f8-4a0d-11ed-a3b6-dac502259ad0.png

图2a) MAPbI3中两种氢空位缺陷的形成能随着费米能级的变化。b) MAPbI3中VH(N)缺陷在不同电荷态下势能曲线随构型坐标的变化规律。c)不同温度下,MAPbI3中VH(N)缺陷的非辐射电子和空穴捕捉系数。

与此同时,该研究也发现当把MA分子替换成FA[FA:CH(NH2)2]分子时,虽然仍存在VH(N)和VH(C)两类氢空位缺陷,但VH(N)在带隙中不再存在电荷转变能级,因而不是一个非辐射复合中心(见图3a)。VH(C)在带隙中包含一个“0”和“–”之间的电荷态转变能级,可能引起非辐射复合,但是它的形成能相较MAPbI3中的VH(N)高出了近1eV。相应的缺陷浓度会低10个数量级左右。这表明在FAPbI3中VH(C)基本不会形成。当然,严格的量子力学计算也进一步证明,即使考虑FAPbI3中VH(C)所引起的非辐射复合(见图3b),其总的非辐射捕捉系数也比MAPbI3中的VH(N)缺陷低了3–4个数量级(见图3c)。所以,虽然同属杂化钙钛矿,FAPbI3受氢空位缺陷的影响要小非常多。

这一研究结果很好地解释了为什么在大量实验尝试中发现要实现高效杂化钙钛矿太阳能电池,总是需要相当多的FA,而不是MA。现在回过头来看,FAPbI3主要的问题是FA的有效离子半径过大,导致FAPbI3的钙钛矿相不够稳定。加入适量的MA,可以起到提高相稳定的作用。但从非辐射复合的角度看,MA的加入本身并不好。如若能直接生长出稳定的FAPbI3,其效率将会比混合的杂化钙钛矿更高。事实上这一结论在本月初Nature刚报道的目前最高效率的钙钛矿太阳能电池中得到了很好的证实,其成分正好是FAPbI3(J. Jeong et al., Nature 592, 381 (2021))。

bec8edd0-4a0d-11ed-a3b6-dac502259ad0.png

图3a) FAPbI3中两种氢空位缺陷的形成能随着费米能级的变化。b) FAPbI3中VH(C)缺陷在不同电荷态下势能曲线随构型坐标的变化规律。c)不同温度下,FAPbI3中VH(C)缺陷的非辐射电子和空穴捕捉系数。

总的来说,该研究首次揭示了氢空位缺陷对于杂化钙钛矿太阳能电池能量转换效率的重要影响。这一关键性的认知为钙钛矿太阳能电池的缺陷调控、钝化以及效率的进一步提升指明了方向。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 新能源
    +关注

    关注

    26

    文章

    5460

    浏览量

    107429
  • 太阳能电池
    +关注

    关注

    22

    文章

    1177

    浏览量

    69352
  • 电流
    +关注

    关注

    40

    文章

    6852

    浏览量

    132141

原文标题:文章转载丨最新《Nature Materials》: 限制杂化钙钛矿效率的关键因素是它!

文章出处:【微信号:hzwtech,微信公众号:鸿之微】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    太阳能电池用什么软件仿真?是silvaco吗?

    如题,钙太阳能电池用什么软件仿真?是silvaco吗?我是做器件仿真,不是材料仿真
    发表于 02-23 17:22

    太阳能电池商品化的漫漫长路

    太阳能电池,科学家们在最新研究中发现,一种钙结构的有机太阳能电池的转化
    发表于 03-01 10:39 2475次阅读

    太阳能电池优缺点

    太阳能电池,尽管研究团队还没有演示以新材料为原料制造的高效太阳能电池,此项研究已成为此前诸多研究强有力的补充,证明了拥有独特晶体结构的钙
    发表于 03-01 11:06 5.2w次阅读

    太阳能电池结构及原理

    几年,钙太阳能电池的研究不断刷新了光电转化效率的纪录,目前已经超过22%了。虽然现在每年光伏产业产能的90%以上都来自晶硅电池,但是由于
    发表于 03-01 11:41 14.7w次阅读
    钙<b class='flag-5'>钛</b><b class='flag-5'>矿</b><b class='flag-5'>太阳能电池</b>结构及原理

    太阳能电池稳定性及发展前景

    太阳能电池,科学家们在最新研究中发现,一种钙结构的有机太阳能电池的转化
    发表于 03-01 17:14 1.4w次阅读

    太阳能电池转换效率高歌猛进大幅度增长至24%

    太阳能电池自2009年问世以来,转换效率高歌猛进,在短短十年之间已经由最初的3%大幅度增长至24%。不过学界对材料的一些基础问题,仍然
    的头像 发表于 07-23 10:13 8322次阅读

    有机无机化钙分解机理的过程

    近年来,由于高效的光电转换效率,基于有机无机化钙材料(CH3NH3PI3,MAPbI3)的
    的头像 发表于 06-05 10:01 8163次阅读

    太阳能电池材料新突破:钙太阳能电池

    。 为了使用更环保的材料替代硅,研究人员将重点放在了钙薄膜上。钙薄膜是一种低成本的柔性太阳能电池,不仅可以用最少的
    的头像 发表于 11-30 13:56 4552次阅读

    中科院在钙太阳能电池研究获得重大突破

    近年来,新兴的有机无机化钙太阳能电池发展突飞猛进,在短短十年里其光电转化效率从3.8%迅速
    发表于 12-07 16:52 1297次阅读

    太阳能电池测试方案

    太阳能电池(perovskite solar cells),是利用钙型的有机金属卤化物半导体作为吸光材料的
    发表于 10-09 14:18 2403次阅读

    能量效率测试仪 | 对钙太阳能电池的量子效率进行科学检测

    伏」生产的美能量效率测试仪可通过数据生成的光谱曲线图来诊断电池的光谱响应,从而判断出钙太阳能电池
    的头像 发表于 10-28 08:34 1089次阅读
    美<b class='flag-5'>能量</b>子<b class='flag-5'>效率</b>测试仪 | 对钙<b class='flag-5'>钛</b><b class='flag-5'>矿</b><b class='flag-5'>太阳能电池</b>的量子<b class='flag-5'>效率</b>进行科学检测

    可弯曲的未来能源:钙太阳能电池的新领域

    电池是一种新型太阳能电池,其结构主要由钙材料构成。这种
    的头像 发表于 11-06 13:23 1217次阅读
    可弯曲的未来能源:钙<b class='flag-5'>钛</b><b class='flag-5'>矿</b><b class='flag-5'>太阳能电池</b>的新领域

    高效介孔钙太阳能电池的电子注入和缺陷钝化!

    大多数钙太阳能电池(PSC)均采用分层结构,其中包括空穴传输层(HTL)和贵金属电极。可印刷介观钙
    的头像 发表于 03-20 10:39 737次阅读
    高效介孔钙<b class='flag-5'>钛</b><b class='flag-5'>矿</b><b class='flag-5'>太阳能电池</b>的电子注入和<b class='flag-5'>缺陷</b>钝化!

    减少钙/硅叠层太阳能电池中的反射损耗研究

    太阳能电池是以钙型晶体为主要吸光材料的太阳能电池,具有高光电
    的头像 发表于 03-23 08:32 2010次阅读
    减少钙<b class='flag-5'>钛</b><b class='flag-5'>矿</b>/硅叠层<b class='flag-5'>太阳能电池</b>中的反射损耗研究

    认证效率高达33.10%,基于宽带隙表面重构威廉希尔官方网站 实现高效钙/硅串联太阳能电池

    宽带隙钙太阳能电池对钙/硅叠层的发展至关重要,但宽带隙钙
    的头像 发表于 12-18 09:03 179次阅读
    认证<b class='flag-5'>效率</b>高达33.10%,基于宽带隙表面重构威廉希尔官方网站
实现高效钙<b class='flag-5'>钛</b><b class='flag-5'>矿</b>/硅串联<b class='flag-5'>太阳能电池</b>