0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

PC处理器的chiplet结构设计未来会向怎样的方向发展

传感器威廉希尔官方网站 来源:电子工程专辑 作者:黄烨锋 2022-10-10 11:33 次阅读

似乎PC处理器这两年竞争的焦点,除了性能、能效这些常规指数,还包括期货水平......IntelAMD现在都热衷于轮番预告未来产品多么彪悍。尤其是Intel,12代酷睿刚发几天,13代酷睿和14代酷睿的消息就不绝于耳了。

最近的Technology Tour 2022上,Intel又分享了有关13代酷睿(Raptor Lake)CPU最高频率可上达6GHz,以及超频记录达8GHz的消息——这应该是明摆着针对即将上市AMD Ryzen 7000的5.7GHz吧。这也算是市场“信息战”了。

不过毕竟过不了多久13代酷睿就要发布了,真正“展望”作品应该是14代酷睿(Meteor Lake)。今年年中的Intel Vision大会上,Intel就展示了14代酷睿处理器的真容:让人们知道了其chiplet方案怎么做的,以及Intel 4工艺的正式提枪上马。

这些未来产品的消息放出,更多的应该还是为了稳住市场和投资者,尤其是Intel着眼于战未来威廉希尔官方网站 的现状。上个月的Hot Chips 34上,Intel详述了Meteor Lake的部分细节信息:尤其是这代芯片采用的chiplet方案。借着14代酷睿的chiplet方案,我们也有机会了解应用于PC处理器的chiplet结构设计未来会向怎样的方向发展。

AMD、苹果已经在用chiplet

PC领域chiplet方案的近代应用并不新鲜,为普罗大众所知的是苹果M1 Ultra——用在了Mac Studio上。这颗芯片差不多是把两颗M1 Max加在一起,属于比较典型的基于chiplet的芯片。所谓的chiplet结构,也就是把几颗die封装到一起构成一颗芯片的方案。这种芯片的每一片die,就是一个chiplet。Chiplet的本质也就是一种多die解决方案。

Chiplet出现的原因莫过于(1)单die越来越大,大到光刻机即将无法处理(超过reticle limit限制);(2)尺寸缩减的多die有利于提升产品良率,缩减成本;(3)应用端的算力需求仍在不断增加,chiplet式的设计也有利于堆算力,在产品组合上也更为灵活。

AMD则是在PC市场上更早应用chiplet方案的先锋,比如在Ryzen 3000系列CPU上,每4个CPU核心组成一个CCX,两个CCX构成一个CCD——也就是一片die/chiplet。多个CCD,外加I/O die,就构成了完整的芯片。这算是近些年PC处理器核心数飙升的某一个原因,毕竟藉由增加CCD来增加处理器核心比以前容易多了。这年头,16核处理器已经不罕见了。

其实基于前文chiplet威廉希尔官方网站 很不严谨的定义,当年的Intel奔腾D胶水双核处理器(2005年)似乎也可以被叫做chiplet。严谨一点,如果我们说chiplet要求先进封装(或至少不是PCB级别的电路连接),那么近代Intel在自家处理器上采用chiplet方案的处理器应该是Kaby Lake-G,8代酷睿产品中的某一个偏门系列,将AMD的iGPU(核显)与Intel的CPU藉由2.5D先进封装工艺,放到同一颗芯片上。

Meteor Lake的chiplet

不过像Kaby Lake-G这样的产品,怎么说都只是试验和先进封装工艺的练手。Intel始终也没有像AMD那样,通过chiplet来堆CPU核心。似乎从直觉来看,随着当代PC处理器核心数增多、I/O能力增强、核显性能内卷,眼见着die size越来越大,还不得不给更多的算力,再不用chiplet是真的不行了。

此前14代酷睿的die shot公布时,我们也都知道了这代产品终于要开始用chiplet方案了。但很显然,Meteor Lake基于chiplet的芯片架构与AMD仍然大相径庭。

d1ada7a8-3741-11ed-ba43-dac502259ad0.jpg

Meteor Lake总共4片die,Intel称其为tile,分别是CPU Tile、SoC Tile、Graphics Tile和IOE Tile(IO extender)。

CPU Tile里面主要就是CPU核心与cache,而Graphics Tile自然就是核显部分了,SoC Tile包含此前SA(System Agent)的绝大部分功能,IOE Tile则连接到SoC Tile。所有的tile都放到一片base die上。这种chiplet式的方案自然就极大提升了处理器产品面向不同市场的灵活性。

比如说要是很看重PCIe连接数量,那么SoC Tile可以做扩展;面向笔记本设备时,SoC Tile还可以加上图像处理单元之类的部分;而CPU Tile则能够根据场景需要来设计不同的核心数组合;GPU die则面向不同的图形算力需求。

d1c02ebe-3741-11ed-ba43-dac502259ad0.png

很容易发现,Meteor Lake的chiplet“切分”方式,和AMD Ryzen的chiplet相当不一样。可能很多人会认为,AMD的CCD + I/O die的设计更灵活,但AMD在移动平台上受制于功耗仍然采用单die方案;而且从die间通信和封装的角度来看,AMD所用的chiplet方案并不能算先进封装——而是直接从PCB基板走线——这种方案成本更低,但对通信效率和功耗而言都不是什么好事。

前不久我们详细探讨过先进封装威廉希尔官方网站 ,及主流的一些方案。Intel虽未详谈Meteor Lake封装,但大致也不离文章里谈到的主流威廉希尔官方网站 。基于2.5D/3D封装,则Meteor Lake的封装成本自然就会高于AMD现阶段的方案,更靠近苹果M1 Ultra(虽然还是不同的)。从扩展灵活性的角度来看,如果CPU要增加更多核心,那么CPU Tile需要更大的die size,则base die的这种硅中介或硅桥也要跟着变大。

不过2.5D/3D先进封装能够获得更高的IO密度、功耗也会更低。这对小尺寸封装,以及电池驱动的功耗敏感型设备来说会很有价值。

Die间互联与通信

AMD此前提到Zen架构的die-to-die Infinity Fabric链接功耗水平为2 pJ/bit(皮焦/比特);Zen 2的Infinity Fabric这一数值降低了大约27%。Chips and Cheese在近期的威廉希尔官方网站 文章中提到,有理由认为AMD的die间传输功耗应该和Intel Haswell(4代酷睿)的OPIO(一般是片上处理器die和PCH die的连接)类似。

d1ec898c-3741-11ed-ba43-dac502259ad0.png


上面这张来自Intel的PPT也基本能阐明这一点。Intel将Meteor Lake的die-to-die link称作FDI(Foveros Die Interconnect)。而FDI的die间通信功耗水平为0.2-0.3 pJ/bit。这张图中的延迟数据比较模糊,只说是小于10ns。AMD那种相对简单粗暴的连接方式,此前公布的延迟数据也是差不多的水平。

AMD说Zen 2架构的这种die间连接延迟为13个FCLK(Infinity Fabric)时钟周期,即不到9ns;如果推升DDR内存频率和FLCK的频率,则Ryzen 3000系列处理器的13个FCLK周期可低至7.22ns。所以Intel这边的延迟数据就显得并不算多好。

另外表中的带宽数据也不算明朗,2 GT/s(每秒20亿次传输)没有指明每次传输的宽度。Chips and Cheese评论说,有可能带宽也就是OPIO或IFOP(Infinity Fabric On Package)的水平。

d2007226-3741-11ed-ba43-dac502259ad0.png


通信协议方面,Intel表示CPU与SoC Tile采用IDI(In-Die Interface)协议,Graphics Tile到SoC Tile则采用iCXL协议(对于现在很火的CXL的一个内部实施方案,和IDI应该有诸多相似之处),SoC与IOE Tile连接是通过IOSF(Integrated On-chip System Fabric)和DisplayPort——可见IOE Tile上估计是有PCIe控制器和DisplayPort PHY的。

这里的IDI,最早出现于Intel Nehalem架构(2008年,初代酷睿i5/i7),用于把CPU核心连接到uncore的Global Queue和L3;后续IDI就成为Intel处理器ring bus总线的主要协议了,当然后续有不断更新。总的来说,IDI是一种处理mesh和ring总线通信的内部协议。

值得一提的是,此前Intel处理器的核显也采用IDI协议与L3 cache连接。去年我们撰写的《苹果M1统一内存架构真的很厉害吗?稀松平常的UMA(下)》一文曾经提到过,酷睿处理器从Sandy Bridge(6代酷睿)开始就把核显挂在环形总线上,LLC(也就是L3 cache)也与核显共享(如下图)。换句话说,核显和CPU一样都能用L3资源。

d20ed0e6-3741-11ed-ba43-dac502259ad0.jpg


不过从Meteor Lake的die shot来看,Graphics Tile和CPU Tile离得比较远,所以过去的这种设计应当也就不复存在了,也就是说核显可能就不再共享L3 cache了。这么做对核显效率会有影响吗?Chips and Cheese评论说或许也未必,因为一方面总线上的stop变少,这利于降低延迟、提升数据传输的能效;另外这可能也有机会让ring频率变高,达成CPU核心更高的L3性能;还有就是核显和CPU隔开,便于将整个CPU Tile设定在低功耗状态,降低功耗。

Chips and Cheese对此还特别提到了一点,就是一般核显的LLC命中率极低。比如Arm架构普遍会用到的SLC(System Level Cache)也为GPU服务,8MB SLC就只有28%的命中率。AMD的GPU Infinity Cache命中率也很低。Intel这边的情况也没好到哪里去。所以有没有必要再共享L3,原本就很值得怀疑。

与此同时,Intel处理器现在的Xe核显配备了更大的专用cache,相比AMD这边的Vega和RDNA 2核显都更大。若这种设计持续,则Meteor Lake的核显应该就有足够的cache资源,不需要多依赖L3。那么当前的这种设计也就比较好理解了。

d21e4670-3741-11ed-ba43-dac502259ad0.png

来源:Lecomptoir via Chips and Cheese

虽然单纯从物理层面的die shot来观察,我们普遍都觉得Meteor Lake即便用了chiplet的方案,耦合度依然比较高,但Chips and Cheese认为其灵活度相比AMD的方案更高,更为分散化(disaggregation)。而且FDI连接在达成与AMD IFOP相似性能的同时,功耗更低。

所以这种连接并不用于性能敏感路径。SoC到IOE Tile链接处理DisplayPort和PCIe数据;核显内存访问则主要由核显的专用cache进行——核显到SoC链接用于处理GPU的cache未命中请求;CPU的L3主要获取内存访问,即藉由CPU到SoC Tile。

Chips and Cheese认为SoC很可能在CPU Tile上有挂一个ring stop,跨die链接只留意发往SoC的IDI packets,而“热”数据则仅在CPU Tile内部ring stop上传递。从die shot来看,在CPU Tile的效率核(E-core)ring stop和这片die的边缘之间有这么一个部分,猜测“这个位于CPU Tile的部分会有不少发往SoC Tile请求的队列和仲裁逻辑。”

明年电脑全面走向chiplet

Intel在Hot Chips上再次明确了14代酷睿Meteor Lake明年发布——上个月有传言说台积电N3工艺遭遇不确定性,可能对Meteor Lake的发布产生影响,不过最近的消息说Meteor Lake的Graphics Tile实际上用的是台积电N5工艺。另外除了CPU Tile基于Intel 4工艺外,传言IOE Tile和SoC Tile都基于台积电N6工艺(还有个base die是基于Intel的22FFL工艺)。

无论面向台式机还是笔记本的Meteor Lake处理器,预计都会采用这种chiplet方案。毕竟像Intel这种方案的特色就是面向不同场景的弹性化选择。未来AMD也有概率会采用类似的方案,因为此前AMD就提到以后15-45W TDP的处理器也将应用chiplet结构,这对其现有IFOP而言在功耗上是个挑战。

这算是个新的威廉希尔官方网站 战场,我们也很期待看到在PC处理器具备相当的性能与功耗弹性扩展空间以后,又会赋予PC设备怎样的体验提升。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • SoC芯片
    +关注

    关注

    1

    文章

    613

    浏览量

    34947
  • PC处理器
    +关注

    关注

    0

    文章

    12

    浏览量

    1977
  • chiplet
    +关注

    关注

    6

    文章

    434

    浏览量

    12606
  • RDNA
    +关注

    关注

    0

    文章

    20

    浏览量

    1919

原文标题:电脑用上chiplet处理器以后,会有哪些变化?

文章出处:【微信号:WW_CGQJS,微信公众号:传感器威廉希尔官方网站 】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    印刷线路板元件布局及结构设计

    印刷线路板的元件布局和电气连线方向的正确结构设计是决定仪器能否可靠工作的一个关键问题,对同一种元件和参数的电路,由于元件布局设计和电气连线方向的不同产生不同的结
    发表于 11-24 09:49 2278次阅读
    印刷线路板元件布局及<b class='flag-5'>结构设计</b>

    变压结构设计手册

    变压结构设计手册内容有:计算程序,进品硅钢板的牌号及其特性,导线尺寸截面积,铁心各级尺寸表,三相单框铁心,夹件,木垫块,铁心及夹件用零件,铁心,铁心装置零件表,铁轭冲槽,铁心用单件,夹件绝缘等内容.变压
    发表于 12-13 01:33

    操作系统结构设计

    而微内核系统结构设计则是近几年来出现的一种新的设计理念,最有代表性的操作系统有Mach和QNX。微内核系统,顾名思义就是系统内核很小!比如说QNX的微内核只负责:   ¨ 进程间的通信   ¨ 低层的网络通信   ¨ 进程调度   ¨ 第一级中断处理
    发表于 09-13 10:10

    手机结构设计心得

    手机结构设计心得
    发表于 11-07 09:59

    招聘--结构设计

    呈现效果,真正将选择视角的主动权还给用户。完美幻境以“科技无极限”为主旨,专注于虚拟现实领域的科技创新,始终坚持以最尖端的科技、性能最佳的产品为用户提供更加极致的科技体验。岗位职责能够独立完成产品结构设计
    发表于 09-25 15:46

    浅谈产品结构设计特点 

    `  产品结构设计是根据产品功能而进行的内部结构的设计,是机械设计的主要内容之一。产品结构设计内容有零件的分件、部件的固定方式、产品使用和功能的实现方式、产品使用材料和表面处理工艺等。
    发表于 02-25 17:24

    软件结构设计

    软件结构设计,,
    发表于 09-26 13:55

    嵌入式DSP处理器的体系结构设计

    本文就总线结构、指令系统、存储系统、流水线、寻址方式等几个方面对一个嵌入式DSP 处理器μDSP 的体系结构设计进行了详细的阐述。关键词:嵌入式DSP 处理器;体系
    发表于 08-14 08:08 21次下载

    结构设计方面资料

    结构设计方面资料
    发表于 08-09 17:02 0次下载

    轴系结构设计实验

    实验六 轴系结构设计实验一、实验目的: 熟悉并掌握轴系结构设计中有关轴的结构设计、滚动轴承组合设计的基本方法。 二、实
    发表于 03-13 19:04 5.8w次阅读
    轴系<b class='flag-5'>结构设计</b>实验

    多核处理器及其对系统结构设计的影响

    摘要:多核威廉希尔官方网站 成为当今处理器威廉希尔官方网站 发展的重要方向,已经是计算机系统设计者必须直面的现实。从计算机系统结构的角度探讨了同构与异构、通用与多用等多核处理器
    发表于 02-27 16:03 38次下载

    惯性闭锁开关的结构设计与分析_许马

    惯性闭锁开关的结构设计与分析_许马
    发表于 03-19 19:04 0次下载

    浅谈产品结构设计类别及产品结构设计的重要性

    产品设计中所涉及的产品结构设计,主要是产品的外部壳体结构设计。目前壳体材料主要是金属材料通过钣金冲压工艺成型和塑料通过注塑工艺成型。常见产品的结构设计主要有钣金结构的设计、塑料产品的
    的头像 发表于 05-26 14:21 9404次阅读

    变频电缆的结构设计怎样

    郑州电缆有限责任公司之郑州一缆电缆有限公司之变频电缆结构设计
    发表于 03-09 17:08 1141次阅读

    FPC的结构设计.zip

    FPC的结构设计
    发表于 03-01 15:37 1次下载