0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

提高宽带隙功率器件的故障分析精度 

青sky 来源:青sky 作者:青sky 2022-07-25 08:05 次阅读

预计 2018 年至 2050 年间,世界能源消耗将增长近 50%,随着对可再生能源的需求增加、汽车工业系统电气化以及对电源管理应用中设备的小型化和提高效率的需求不断增长。

随着半导体器件尺寸的缩小和变得更加复杂,缺陷定位和故障分析变得更加关键,也更具挑战性。借助高密度互连、晶圆级堆叠、柔性电子器件和集成基板等结构元素,导致故障的缺陷有更多的隐藏空间。更糟糕的是,这些故障可能发生在设备封装阶段,导致产量下降和上市时间增加。

为了克服这一挑战,结合电气故障分析 (EFA) 和物理故障分析 (PFA) 可以更深入地了解故障机制,并最终提高性能、可靠性和制造良率。当先进的 EFA 和 PFA 分析工具结合到完整的 EFA 到 PFA 工作流程中时,这些工具使您能够更快、更准确地定位和表征氮化镓 (GaN) 等宽带隙 (WBG) 材料中的细微电气问题和碳化硅 (SiC)。

在功率器件中使用新材料

如今,半导体行业正在超越硅,开发下一代功率器件:WBG 功率器件。WBG 功率器件非常适合要求苛刻的应用,例如需要高功率的电动汽车或需要超长电池寿命的物联网设计。不幸的是,GaN 和 SiC 等材料可能会遇到开发人员尚未见过的故障模式。因此,传统的故障分析方法可能无法胜任这项任务。这使得识别可能影响产量和可靠性的根本原因变得更加困难。

硅金属氧化物半导体场效应晶体管MOSFET) 提供了一个有用的示例。这些产品专为大功率应用而设计,已成为大多数开关电源应用的首选设备。不幸的是,功率 MOSFET 的性能已达到极限,因为新的要求要求在更小的封装中提供更高的电压和更快的频率。使用 GaN 或 SiC 重新设计此类设备,可以为新兴的大功率应用创建可靠、紧凑且具有成本效益的解决方案。

功率 MOSFET 器件的故障

当使用 WBG 材料制造时,功率 MOSFET 具有垂直结构,将源极和漏极放置在晶圆的相对两侧,从而实现更高的电流和电压偏置。这与使用并行结构的 CMOS 器件不同。

在电气领域,漏极和源极之间的漏电流 (I DSS ) 或栅极和源极之间的漏电流 (I GSS ) 是功率 MOSFET 故障的一般类别。将故障分析集中在这些机制上的能力提供了重要的见解,可用于改进生产方法、生产良率和未来设计。

图 1:电子束图像显示了功率 MOSFET 晶片的漏极侧,铝沉积在钛/氮化钛层的顶部。

在物理实现中,铝 (Al) 和钛 (Ti) 或氮化钛 (TiN) 的金属层通常沉积在单个晶体管的顶部(图 1)。这些不透明的层会造成故障隔离的困难。例如,很难使用光子发射显微镜或光束感应电阻变化 (OBIRCH) 扫描来准确观察或定位缺陷。光子无法穿透金属层,金属可能会吸收 OBIRCH 激光。

EFA-TO-PFA 工作流程

WBG 功率器件(如功率 MOSFET)所带来的一系列挑战为采用新的故障分析方法提供了强有力的理由。

与功率设备制造商合作,开发和验证了一个由四部分组成的工作流程,该工作流程结合了 EFA 和 PFA 的优势,可实现电气和物理故障的快速定位、隔离和可视化。例如,使用 Thermo Fisher Scientific 的 EFA 和 PFA 解决方案,工作流程从 EFA 进展到 PFA。四部分工作流程包括:

粗略故障隔离:在功率 MOSFET 中,故障可能是由于 I DSS或 I GSS泄漏电流。在这个阶段,Thermo Scientific ELITE 和锁定热成像仪用于通过厚厚的顶层金属检测热点及其位置。由于金属层掩盖了确切的缺陷,因此需要额外的步骤来准确确定故障及其确切位置。

样品制备和去处理:为了准确识别故障及其确切位置,需要在金属层中创建一个“窗口”以暴露各个晶体管。这是通过使用 Thermo Scientific Helios 5 PFIB 进行去处理来完成的,以去除 Al 和 Ti/TiN 的顶层。

精细故障隔离:然后使用带有一个或两个尖端纳米探针的 Thermo Scientific ELITE 或 Hyperion II 对去处理区域进行精细故障隔离,以扫描并确定精确的故障位置。

成像和分析:通过精细故障隔离确定准确的故障位置后,使用 Thermo Scientific Helios 5 DualBeam 观察和分析实际的物理缺陷。

图 2:工作流程从粗故障隔离到去处理,再到精细故障隔离,再到缺陷成像,这是一个失败的源接触。

结果

在同一个示例中,我们与客户合作,在有缺陷的 MOSFET 芯片和晶圆上测试和验证了 EFA 到 PFA 的工作流程。

对于每个样品,EFA 通过厚铝层检测到一个热源。去处理快速、均匀地去除了铝和 Ti/TiN 屏障,以进入感兴趣区域 (ROI)。扫描 ROI 以在纳米尺度上专门隔离故障。PFA 数据使客户能够成功地可视化和验证各个故障位置的缺陷。

在所有情况下,工作流都实现了 100% 的成功率来导航并确定故障。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    184

    文章

    17769

    浏览量

    250730
  • 半导体
    +关注

    关注

    334

    文章

    27502

    浏览量

    219721
收藏 人收藏

    评论

    相关推荐

    功率器件热设计基础(十一)——功率半导体器件功率端子

    /前言/功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率
    的头像 发表于 01-06 17:05 108次阅读
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b>热设计基础(十一)——<b class='flag-5'>功率</b>半导体<b class='flag-5'>器件</b>的<b class='flag-5'>功率</b>端子

    宽带栅极驱动器的新兴发展趋势

    宽带 (WBG) 功率晶体管正逐渐成为主流,不断有新产品涌入市场。栅极驱动器也必须不断发展以满足这些新器件的要求。在本博客中,我们将重点介绍 WBG
    发表于 12-10 16:35 226次阅读

    碳化硅SiC在电子器件中的应用

    随着科技的不断进步,电子器件的性能要求也日益提高。传统的硅(Si)材料在某些应用中已经接近其物理极限,尤其是在高温、高压和高频领域。碳化硅(SiC)作为一种宽带(WBG)半导体材料,
    的头像 发表于 11-25 16:30 790次阅读

    Nexperia与科世达达成合作 共同推进汽车应用宽带器件的生产

    近日,全球领先的半导体公司Nexperia宣布与知名汽车供应商科世达(KOSTAL)建立战略合作伙伴关系。这一合作将专注于开发和生产符合汽车行业严格规范的宽带(WBG)电力电子器件,特别是针对
    的头像 发表于 11-06 11:58 375次阅读
    Nexperia与科世达达成合作 共同推进汽车应用<b class='flag-5'>宽带</b><b class='flag-5'>隙</b><b class='flag-5'>器件</b>的生产

    中国科大徐集贤团队Science:抑制相分离的三卤化物宽带钙钛矿可实现高效钙钛矿/硅叠层太阳能电池

    宽带金属卤化物钙钛矿是与硅叠层结合使用的理想半导体,以实现超过30%的功率转换效率(PCE),同时降低成本。然而,宽带钙钛矿太阳能电池受
    的头像 发表于 10-16 08:08 618次阅读
    中国科大徐集贤团队Science:抑制相分离的三卤化物<b class='flag-5'>宽带</b><b class='flag-5'>隙</b>钙钛矿可实现高效钙钛矿/硅叠层太阳能电池

    浮思特 | 宽带半导体威廉希尔官方网站 能否引领汽车行业的电动化革命?

    种需求则由转换器的功率要求和工作频率决定。因此,提高转换器的工作频率可以减少能量存储元件的体积,这直接影响到转换器的总体积、功率密度和成本。通过使用宽带
    的头像 发表于 10-11 11:19 588次阅读
    浮思特 | <b class='flag-5'>宽带</b><b class='flag-5'>隙</b>半导体威廉希尔官方网站
能否引领汽车行业的电动化革命?

    功率MOSFET故障分析

    控制、转换和调节。然而,由于其工作环境复杂且多变,功率MOSFET在使用过程中可能会遇到各种故障。本文将对功率MOSFET的常见故障进行分析
    的头像 发表于 10-08 18:29 542次阅读

    宽带功率半导体双脉冲测试解决方案

    完成,但自动化可加快流程并有助于获得准确、一致的结果。 宽带双脉冲测试软件集成到 5 系列 B MSO 中,可自动执行仪器设置并执行能量损耗和定时的标准测量。智能差分电压和电流探头通过与示波器通信进一步简化设置。 该系统提供以下功能: 独特的边缘细化算
    的头像 发表于 09-30 08:57 274次阅读
    <b class='flag-5'>宽带</b><b class='flag-5'>隙</b><b class='flag-5'>功率</b>半导体双脉冲测试解决方案

    功率器件的开关波形分析

    功率器件,特别是如功率MOSFET和IGBT等,在电力电子系统中扮演着至关重要的角色。它们的开关波形分析对于理解器件性能、优化系统设计以及确
    的头像 发表于 07-19 14:08 877次阅读

    功率分析仪的常见故障和原因分析

    故障。本文将对功率分析仪的常见故障进行归纳分类,并深入分析其产生的原因,旨在帮助用户更好地了解设备故障
    的头像 发表于 05-11 16:10 1366次阅读

    SiC与GaN 功率器件中的离子注入威廉希尔官方网站 挑战

    碳化硅(SiC)和氮化镓(GaN)等宽带(WBG)半导体预计将在电力电子器件中发挥越来越重要的作用。与传统硅(Si)设备相比,它们具有更高的效率、功率密度和开关频率等主要优势。离子注
    的头像 发表于 04-29 11:49 1333次阅读
    SiC与GaN <b class='flag-5'>功率</b><b class='flag-5'>器件</b>中的离子注入威廉希尔官方网站
挑战

    赛劲SEJINIGB零背滚轮齿条齿圈产品助力高精度运动平台

    赛劲SEJINIGB CRP SERIES滚轮/齿条/齿圈具有高精度、零背、高速度、低噪音,低发尘等特点。当CRP SERIES滚轮和齿条(齿圈)啮合时,可以实现零背,在传动过程中几乎没有能量
    的头像 发表于 04-24 09:56 928次阅读
    赛劲SEJINIGB零背<b class='flag-5'>隙</b>滚轮齿条齿圈产品助力高<b class='flag-5'>精度</b>运动平台

    碳化硅功率器件的工作原理

    碳化硅功率器件的核心在于其能够在极端条件下高效地控制电力的流动。SiC材料的宽带特性意味着它在高温下仍能维持较高的能量障碍,从而保持稳定的半导体特性。
    发表于 03-26 10:56 405次阅读
    碳化硅<b class='flag-5'>功率</b><b class='flag-5'>器件</b>的工作原理

    探讨碳化硅功率器件的工作原理、优势、应用场景

    碳化硅功率器件利用SiC半导体材料制成。SiC是一种宽带半导体材料,具有比硅(Si)更高的电子饱和漂移速度和热导率,以及更高的临界击穿电场强度。
    发表于 03-14 10:47 496次阅读
    探讨碳化硅<b class='flag-5'>功率</b><b class='flag-5'>器件</b>的工作原理、优势、应用场景

    Aigtek宽带功率放大器频率特性分析

    宽带功率放大器是一种能够放大宽频信号的放大器,它可以将不同频段的信号进行混合放大。这种宽带放大器的频率特性分析对于设计和优化其性能非常重要。本文将介绍
    的头像 发表于 01-24 11:28 485次阅读
    Aigtek<b class='flag-5'>宽带</b><b class='flag-5'>功率</b>放大器频率特性<b class='flag-5'>分析</b>