0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

比特对编码的原理设计

FPGA之家 来源:FPGA之家 作者:FPGA之家 2022-07-14 09:23 次阅读

比特对编码与比特对编码乘法器的设计

今天一起看看比特对编码(有的也把它称为基4booth编码,名字不重要,主要是思想),可以解决上文中提到的问题

比特对编码原理

booth重编码的主要问题在于不能过滤掉010这样序列。故考虑将通过连续相邻两位进行编码,每次从低位向高位移动1位的方式(即booth比编码),变成连续相邻3位进行编码,每次从低位向高位移动2位的方式(比特对编码)。先讨论其原理。

一个数我们考虑从低位向高位对其进行编码,使其变成4进制(基4)的表示形式,每两位二进制表示一位的四进制数。

3(2'b11)比4少1,2(2'b10)比4少2。在4进制数中,2需要向前进位则需要减去2再向前进位;3需要向前进位则需要减去1再向前进位。

我们的比特对编码就是基于上述原理来的。

下面给出比特对编码规律,如下表和图所示,图为一个实例,是对1011_1111的编码,其表示-65。比特对编码结果为 -1 00-1,故其表示的十进制d为:

d=-4^3 -4^0= -65

cd70b9ce-0310-11ed-ba43-dac502259ad0.png

cd85bd24-0310-11ed-ba43-dac502259ad0.png

再举个例子,比如对0001_1001进行比特对编码,得到编码为:

+2-2+1

故其表示的十进制计算如下:

d=2*(4^2) -2*(4^1) +4^0

=32+8+1=41

其中的乘2与乘4都可以通过移位操作来实现,这就是为什么需要这么编码的原因。

可以看到,每相邻三位进行编码,其中的最低位mi-1 其实表示来自前面的进位。故当其为 001时,得到的编码为 +1(表示4),011时最低位1表示进位,故编码为1+1=+2。

从中可以得出,对于8位二进制数0101_0101,经过比特对编码后,得到的是 +1 +1 +1 +1,其表示的数为:

4^3 + 4^2 + 4^1 + 4^0 =

64+16+4+1=85

此时只需要进行3次加法运算,不会存在booth编码所存在的问题。

同时发现对于数据位宽非偶数的数,我们需要将其在最高位补填一位符号位,再进行比特对编码。

比特对编码(对乘数进行编码)乘法器,需要进行的加法次数为乘数位宽的一半。

比特对编码乘法器设计

设计思想概叙:定义位宽为DW_A+DW_B+2的product寄存器(DW_A为被乘数a的位宽,DW_B为乘数b的位宽)。当in_valid与in_ready同时为高时,将乘数b(位宽为b)加载到product的低DW_B位。然后在计算状态下(executing),将每次加法器的输出放到product的高位,并每个时钟周期将product右移2位。每个时钟周期,通过对

m={product[1:0],prd_r[1]}

(其中prd_r[1]为上一个时钟product的第二位)进行编码,得出本次操作是加1、加2,减1,减2,还是不用做加减法(编码为0)(代码中上述五种操作对应的标志信号分别为add_1,add_2,sub_1,sub_2,noneed_add)。并将加法结果每次存到product寄存器的高位。

这里有个巧妙的思想就是,每个时钟周期通过对product右移2位,再将其高DW_A位与a或者a*2进行相加或者相减操作,正好相当于每次product不动,把a或者a*2左移2位(乘以4)。这个思想源于《Verilog HDL 高级数字设计》中的精简寄存器时序乘法器设计。

注意,这里是有符号数乘法器,每次左移需要在高位补符号位,故左移不能简单的用 >> 描述(>>左移默认高位填0),具体描述见代码。

其中减法采用加上这个数的补码的方式;通过一个计数器(cnt)来指示什么时候结束运算;其中运算控制状态机采用《状态机的第四种描述方式》编写;条件选择多采用与或方式实现。

设计Verilog如下(dff_with_en为寄存器):

module radix4_mul #(  parameter  DW_A = 16,  parameter  DW_B = 8)(   input  clk,   input  rst_n,
   input  in_valid,   output in_ready,   input  flush,
   output o_valid,   input o_ready,
   input [DW_A-1:0] a,   input [DW_B-1:0] b,
   output [DW_A+DW_B-1:0] mul_res);
//state machine for mulwire state;wire [$clog2((DW_B+1)/2):0] cnt;
wire exe_cnt_final = (cnt == (DW_B+1)/2);
wire execute_en = in_valid&in_ready;
localparam GET_DATA = 1'b0;localparam EXECUTING = 1'b1;
wire curr_get_data = (state == GET_DATA);wire curr_executing = (state == EXECUTING);
wire is_executing = curr_executing & (~exe_cnt_final);
wire nxt_get_data_en = (curr_executing & exe_cnt_final & o_ready) | flush;wire nxt_executing = curr_get_data & execute_en;
wire nxt_state = (nxt_get_data_en & GET_DATA) |            (nxt_executing & EXECUTING);
wire tran_en = nxt_get_data_en | nxt_executing;
dff_with_en #(   .DW(1))dff_state(   .clk (clk),   .rst_n (rst_n),   .enable (tran_en),   .d_in (nxt_state),   .q_out (state));
//cnt//wire [$clog2((DW_B+1)/2):0] cnt_nxt = curr_executing ? cnt+1 : 'h0;
dff_with_en #(   .DW($clog2((DW_B+1)/2)+1))dff_cnt(   .clk (clk),   .rst_n (rst_n),   .enable (1'b1),   .d_in (cnt_nxt),   .q_out (cnt));
//get the awire [DW_A-1:0] a_d;wire [DW_A-1:0] nxt_a_d = nxt_executing ? a : a_d;
dff_with_en #(   .DW(DW_A))dff_a(   .clk (clk),   .rst_n (rst_n),   .enable (1'b1),   .d_in (nxt_a_d),   .q_out (a_d));//radix 4 codingwire prd_r;wire [DW_A+DW_B+1:0] product;//wire [DW_B-1:0] b_shift;wire [2:0] m = is_executing ? {product[1:0],prd_r} : 3'b000;
wire add_1 = (m == 3'b001) | (m == 3'b010);wire add_2 = (m == 3'b011);wire sub_1 = (m == 3'b110) | (m == 3'b101);wire sub_2 = (m == 3'b100);
//wire [DW_A+DW_B+1:0] product;
wire [DW_A+1:0] adder_op1 = ( {DW_A+2{add_1}}& { {2{a_d[DW_A-1]}},a_d} )       |                      ( {DW_A+2{add_2}}& { {1{a_d[DW_A-1]}},a_d,1'b0} )  |          ( {DW_A+2{sub_1}}& (~{ {2{a_d[DW_A-1]}},a_d}) )    |          ( {DW_A+2{sub_2}}& (~{ {1{a_d[DW_A-1]}},a_d,1'b0}));
wire add_en = (add_1 | add_2 | sub_1 | sub_2)& is_executing;       wire noneed_add = is_executing & (~(add_1 | add_2 | sub_1 | sub_2));
wire [DW_A+1:0] adder_op2 = product[DW_A+DW_B+1:DW_B];
wire adder_cin = sub_1|sub_2;
wire [DW_A+1:0] adder_res = adder_op1 + adder_op2 + adder_cin;
wire [DW_A+DW_B+1:0] nxt_product = ({DW_A+DW_B+2{add_en}} &{{2{adder_res[DW_A+1]}},adder_res,product[DW_B-1:2]})|                              ({DW_A+DW_B+2{noneed_add}} & {{2{product[DW_A+DW_B+1]}},product[DW_A+DW_B+1:2]}) |           ({DW_A+DW_B+2{o_valid}} & product) |           ({DW_A+DW_B+2{nxt_executing}} & {{DW_A+2{1'b0}},b});
dff_with_en #(   .DW(DW_A+DW_B+2))dff_product(   .clk (clk),   .rst_n (rst_n),   .enable (1'b1),   .d_in (nxt_product),   .q_out (product));
wire prd_nxt = curr_get_data ? 1'b0 : product[1];
dff_with_en #(   .DW(1))dff_prd(   .clk (clk),   .rst_n (rst_n),   .enable (1'b1),   .d_in (prd_nxt),   .q_out (prd_r));assign in_ready = curr_get_data;assign o_valid = exe_cnt_final;assign mul_res = product[DW_A+DW_B-1:0];
endmodule

如果乘数b位宽为奇数,请补一位符号位,变成偶数位宽,再输入。

原文标题:比特对编码与比特对编码乘法器的设计

文章出处:【微信公众号:FPGA之家】欢迎添加关注!文章转载请注明出处。

审核编辑:彭静

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 编码
    +关注

    关注

    6

    文章

    946

    浏览量

    54871
  • 比特
    +关注

    关注

    0

    文章

    16

    浏览量

    10522
  • 乘法器
    +关注

    关注

    8

    文章

    205

    浏览量

    37120
收藏 人收藏

    评论

    相关推荐

    DAC1280 TDATA引脚输入的比特流,怎么产生这个比特流,算法是什么?

    我想请问下关于DAC1280的TDATA引脚输入的比特流的问题: 1,怎么产生这个比特流,算法是什么? 2,怎么控制输出信号的频率? 对您的回答感激不尽,谢谢。
    发表于 01-06 06:21

    bcd编码的优缺点 bcd编码的常见错误

    BCD(Binary-Coded Decimal)编码是一种二进制编码方式,用于将十进制数(0-9)直接转换为二进制形式。这种编码方式在数字系统中非常常见,尤其是在需要处理数字数据的硬件和软件中
    的头像 发表于 12-20 17:17 500次阅读

    编码器类型详解:探索不同编码威廉希尔官方网站 的奥秘

    编码器类型详解:探索不同编码威廉希尔官方网站 的奥秘 在自动化、机器控制和数据处理等领域,编码器作为关键的传感器组件,扮演着至关重要的角色。它们通过将物理位置、速度或方向转换为电信号,为各种设备提供精确的控制
    的头像 发表于 11-19 08:58 856次阅读
    <b class='flag-5'>编码</b>器类型详解:探索不同<b class='flag-5'>编码</b>威廉希尔官方网站
的奥秘

    增量编码器与绝对值编码器的区别

    增量编码器与绝对值编码器的区别:增量编码器与绝对值编码器在精度特点对比 增量编码器的精度取决于脉冲的数量和测量的细分程度,通常情况下,其精度
    的头像 发表于 11-18 16:38 787次阅读
    增量<b class='flag-5'>编码</b>器与绝对值<b class='flag-5'>编码</b>器的区别

    二进制编码器与绝对编码器的区别

    编码器是工业自动化和机器人威廉希尔官方网站 中不可或缺的组件,用于将机械位置或运动转换为电信号。二进制编码器和绝对编码器是两种常见的编码器类型,它们各自有着独特的特点和应用场景。 二进制
    的头像 发表于 11-06 09:54 539次阅读

    编码器常见的类型有哪些?

    编码器(encoder)是一种能够将信号(如比特流)或数据进行编制、转换为可用于通讯、传输和存储的信号形式的设备,它通常用于检测机械运动的速度、位置、角度、距离等。编码器的类型多种多样,根据
    的头像 发表于 10-25 09:30 800次阅读

    磁电编码器和光电编码器的区别

    磁电编码器和光电编码器是两种不同类型的编码器,它们在原理、结构、性能和应用领域上都有所不同。 磁电编码器和光电编码器的区别 1. 引言
    的头像 发表于 10-12 09:54 1329次阅读

    比特率和波特率的计算公式及举例说明

    ),简写为bps。比特率的计算通常基于数据传输的总量和所需时间。然而,在更具体的场景中,如音频、视频或网络数据传输,比特率往往由编码方式、数据质量和传输需求等因素决定,并可能通过特定的编码
    的头像 发表于 08-05 15:18 1496次阅读

    波特率和比特率是什么意思

    比特率(Bit Rate)是比特的传输速率,也就是通信系统时间内的信息传输速率,单位是比特/秒(bit/s)。比特率是指每秒传送的比特(bi
    的头像 发表于 07-10 09:16 805次阅读
    波特率和<b class='flag-5'>比特</b>率是什么意思

    请问USB模拟串口的比特率在哪调?

    USB模拟串口的比特率在哪调?
    发表于 06-14 06:57

    增量编码器和绝对值编码器的区别

    在工业自动化和精密测量领域,编码器是不可或缺的关键设备。编码器能够将机械位移转换为电信号,以便于计算机或其他数字系统进行处理。在编码器的众多类型中,增量编码器和绝对值
    的头像 发表于 06-03 15:40 2918次阅读

    数字信号处理实验操作教程:3-3 mp3音频编码实验(AD7606采集)

    离散化,同时将抽样值按分层单位四舍五入取整量化,同时将抽样值按一组二进制码来表示抽样脉冲的幅值。 MP3编码参数 (1)采样率(sampleRate):采样率越高声音的还原度越好。 (2)比特
    发表于 04-03 16:41

    编码器分辨率是什么意思 编码器分辨率和脉冲数的关系

    按照编码器支持的分辨率可以把编码器分成标清编码器、高清编码器、全高清编码器,分辨率越高帧率越高视频就越清楚。 1.
    的头像 发表于 02-21 18:07 4336次阅读
    <b class='flag-5'>编码</b>器分辨率是什么意思 <b class='flag-5'>编码</b>器分辨率和脉冲数的关系

    编码器好坏怎么判断,编码器原理

    编码器(Encoder)是将输入数据转化为特定编码表示的一种威廉希尔官方网站 。对于不同类型的编码器,评判其好坏可以从多个方面进行考量,包括编码质量、速度、模型结构等。
    的头像 发表于 01-23 10:58 1933次阅读

    磁性编码器和光电编码器的比较

    伺服电机编码器是一种关键的反馈装置,用于测量和控制电机的转速和位置。在选择伺服电机编码器时,常常面临一个选择:使用磁电编码器还是光电编码器。接下来将从几个关键方面比较这两种类型的
    的头像 发表于 01-18 10:29 3292次阅读