0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GD32 RISC-V系列 BSP框架制作与移植

嵌入式大杂烩 来源:嵌入式大杂烩 作者:嵌入式大杂烩 2022-06-22 19:44 次阅读

手把手教你使用RT-Thread制作GD32 RISC-V系列BSP

熟悉RT-Thread的朋友都知道,RT-Thread提供了许多BSP,但不是所有的板子都能找到相应的BSP,这时就需要移植新的BSP。RT-Thread的所有BSP中,最完善的BSP就是STM32系列,但从2020年下半年开始,国内出现史无前例的芯片缺货潮,芯片的交期和价格不断拉升,STM32的价格也是水涨船高,很多朋友也在考虑使用国产替代,笔者使用的兆易创新的GD32系列,我看了下RT-Thread中GD系列BSP,都是玩家各自为政,每个人都是提交自己使用的板子的BSP,充斥着大量冗余的代码,对于有强迫症的我就非常不爽,就根据手头的板子,参看STM32的BSP架构,构建了GD32的BSP架构。

目前笔者已经完成了ARM架构和RISC-V架构的移植,关于ARM架构的移植可以看我以前的文章,本文将要讲解基于RISC-V架构的移植。

笔者使用的开发板是兆易创新设计的GD32VF103V-SEVAL开发板。其主控芯片为GD32VF103VB,主频 108MHz,128KB FLASH,32KB RAM,资源还算丰富。

pYYBAGKy-yaAZMK1AAHDDFLltVo796.png

1 BSP框架制作

在具体移植GD32VF103V-SEVAL的BSP之前,先做好GD32 RISC-V系列的BSP架构。BSP框架结构如下图所示:

poYBAGKy-zKAOvYGAACIroKhBts181.png

BSP架构主要分为三个部分:libraries、tools和具体的Boards,其中libraries包含了GD32的通用库,包括每个系列的Firmware Library以及适配RT-Thread的drivers;tools是生成工程的Python脚本工具;另外就是Boards文件,当然这里的Boards有很多,我这里值列举了GD32VF103V-SEVAL。

这里先谈谈libraries和tools的构建,然后在后文单独讨论具体板级BSP的制作。

1.1 Libraries构建

Libraries文件夹包含兆易创新提供的固件库,这个直接在兆易创新的官网就可以下载

下载地址:http://www.gd32mcu.com/cn/download/

然后将GD32VF103_Firmware_Library复制到libraries目录下,其他的系列类似。

pYYBAGKy-z2AXxdDAAAvrJRX3BE603.png

GD32VF103_Firmware_Library就是官方的文件,基本是不用大改,这里先在在文件夹中需要添加构建工程的脚本文件SConscript,其实也就是Python脚本。后面具体讲解需要修改的地方。

pYYBAGKy-02AYQceAABZ4zU-8Wg632.png

SConscript文件的内容如下:

import rtconfig
from building import *

# get current directory
cwd = GetCurrentDir()

# The set of source files associated with this SConscript file.
cwd = GetCurrentDir()

src = Split('''
RISCV/env_Eclipse/handlers.c
RISCV/env_Eclipse/init.c
RISCV/env_Eclipse/your_printf.c
RISCV/drivers/n200_func.c
GD32VF103_standard_peripheral/system_gd32vf103.c
GD32VF103_standard_peripheral/Source/gd32vf103_gpio.c
GD32VF103_standard_peripheral/Source/gd32vf103_rcu.c
GD32VF103_standard_peripheral/Source/gd32vf103_exti.c
GD32VF103_standard_peripheral/Source/gd32vf103_eclic.c
''')
   
if GetDepend(['RT_USING_SERIAL']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_usart.c']
   
if GetDepend(['RT_USING_I2C']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_i2c.c']

if GetDepend(['RT_USING_SPI']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_spi.c']

if GetDepend(['RT_USING_CAN']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_can.c']

if GetDepend(['BSP_USING_ETH']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_enet.c']

if GetDepend(['RT_USING_ADC']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_adc.c']

if GetDepend(['RT_USING_DAC']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_dac.c']

if GetDepend(['RT_USING_HWTIMER']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_timer.c']

if GetDepend(['RT_USING_RTC']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_rtc.c']
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_pmu.c']

if GetDepend(['RT_USING_WDT']):
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103_wwdgt.c']
    src += ['GD32VF103_standard_peripheral/Source/gd32vf103fwdgt.c']

path = [
    cwd + '/RISCV/drivers',
    cwd + '/GD32VF103_standard_peripheral',
    cwd + '/GD32VF103_standard_peripheral/Include',]

group = DefineGroup('Libraries', src, depend = [''], CPPPATH = path)

Return('group')

该文件主要的作用就是添加库文件和头文件路径,一部分文件是属于基础文件,因此直接调用Python库的Split包含,另外一部分文件是根据实际的应用需求添加的。

这里是以GD32VF1来举例的,其他系列的都是类似的。

接下来说说Kconfig文件,这里是对内核和组件的功能进行配置,对RT-Thread的组件进行自由裁剪。

如果使用ENV环境,则在使用 menuconfig配置和裁剪 RT-Thread时体现。

poYBAGKxy_qAAKaAAADWXQnSAxc666.png

后面所有的Kconfig文件都是一样的逻辑。下表列举一些常用的Kconfig句法规则。

关键词 说明
config 此关键字定义了一新的配置选项
menuconfig 此关键字和前面的关键字很相似,但它在前面的基础上要求所有的子选项作为独立的行显示。
choice/endchoice 该关键字定义了一组选择项。
comment 这里定义了在配置过程中显示给用户的注释,该注释还将写进输出文件中。格式说明: comment "eg: description content"
menu / endmenu 这里定义了一个菜单,所有依赖于此菜单的选项都是它的子选项。
if/endif 这里定义了if结构。
source 读取其他具体的配置文件,其他配置文件会被解析。

Kconfig的语法规则网上资料很多,自行去学习吧。

bsp/gd32/risc-v/libraries/Kconfig内容如下:

config SOC_FAMILY_GD32
    bool

config SOC_GD32VF103V
    bool
    select SOC_SERIES_GD32VF103V
    select SOC_FAMILY_GD32

最后谈谈gd32_drivers,这个文件夹就是GD32的外设驱动文件夹,为上层应用提供调用接口

poYBAGKy-3eAfKUMAACv920wGQY383.png

该文件夹是整个GD32共用的,因此在编写和修改都要慎重。关于drv_xxx文件在后句具体移植BSP的时候讲解,这里主要将整体架构,SConscript和Kconfig的作用和前面的一样,只是具体的内容不同罢了。

好了,先看bsp/gd32/risc-v/libraries/gd32_drivers/SConscript文件。

Import('RTT_ROOT')
Import('rtconfig')
from building import *

cwd = GetCurrentDir()

# add the general drivers.
src = Split("""
""")

# add pin drivers.
if GetDepend('RT_USING_PIN'):
    src += ['drv_gpio.c']

# add usart drivers.
if GetDepend(['RT_USING_SERIAL']):
    src += ['drv_usart.c']

# add i2c drivers.
if GetDepend(['RT_USING_I2C', 'RT_USING_I2C_BITOPS']):
    if GetDepend('BSP_USING_I2C0') or GetDepend('BSP_USING_I2C1') or GetDepend('BSP_USING_I2C2') or GetDepend('BSP_USING_I2C3'):
        src += ['drv_soft_i2c.c']

# add spi drivers.
if GetDepend('RT_USING_SPI'):
    src += ['drv_spi.c']

# add spi flash drivers.
if GetDepend('RT_USING_SFUD'):
    src += ['drv_spi_flash.c', 'drv_spi.c']

# add wdt drivers.
if GetDepend('RT_USING_WDT'):
    src += ['drv_wdt.c']

# add rtc drivers.
if GetDepend('RT_USING_RTC'):
    src += ['drv_rtc.c']

# add timer drivers.
if GetDepend('RT_USING_HWTIMER'):
    src += ['drv_hwtimer.c']

# add adc drivers.
if GetDepend('RT_USING_ADC'):
    src += ['drv_adc.c']

path = [cwd]

group = DefineGroup('Drivers', src, depend = [''], CPPPATH = path)

Return('group')

和GD32VF103_Firmware_Library文件夹中的SConscript是类似的。

bsp/gd32/risc-v/libraries/gd32_drivers/Kconfig文件结构如下:

if BSP_USING_USBD
    config BSP_USBD_TYPE_FS
        bool
        # "USB Full Speed (FS) Core"
endif

1.2 Tools构建

该文件夹就是工程构建的脚本,

import os
import sys
import shutil

cwd_path = os.getcwd()
sys.path.append(os.path.join(os.path.dirname(cwd_path), 'rt-thread', 'tools'))

def bsp_update_board_kconfig(dist_dir):
    # change board/kconfig path
    if not os.path.isfile(os.path.join(dist_dir, 'board/Kconfig')):
        return

    with open(os.path.join(dist_dir, 'board/Kconfig'), 'r') as f:
        data = f.readlines()
    with open(os.path.join(dist_dir, 'board/Kconfig'), 'w') as f:
        for line in data:
            if line.find('../libraries/gd32_drivers/Kconfig') != -1:
                position = line.find('../libraries/gd32_drivers/Kconfig')
                line = line[0:position] + 'libraries/gd32_drivers/Kconfig"\n'
            f.write(line)
           
# BSP dist function
def dist_do_building(BSP_ROOT, dist_dir):
    from mkdist import bsp_copy_files
    import rtconfig

    print("=> copy gd32 bsp library")
    library_dir = os.path.join(dist_dir, 'libraries')
    library_path = os.path.join(os.path.dirname(BSP_ROOT), 'libraries')
    bsp_copy_files(os.path.join(library_path, rtconfig.BSP_LIBRARY_TYPE),
                   os.path.join(library_dir, rtconfig.BSP_LIBRARY_TYPE))

    print("=> copy bsp drivers")
    bsp_copy_files(os.path.join(library_path, 'gd32_drivers'), os.path.join(library_dir, 'gd32_drivers'))
    shutil.copyfile(os.path.join(library_path, 'Kconfig'), os.path.join(library_dir, 'Kconfig'))
   
    bsp_update_board_kconfig(dist_dir)

以上代码很简单,主要使用了Python的OS模块的join函数,该函数的作用就是连接两个或更多的路径名。最后将BSP依赖的文件复制到指定目录下。

在使用scons --dist命令打包的时候,就是依赖的该脚本,生成的dist文件夹的工程到任何目录下使用,也就是将BSP相关的库以及内核文件提取出来,可以将该工程任意拷贝。

需要注意的是,使用scons --dist打包后需要修改board/Kconfig中的库路径,因此这里调用了bsp_update_board_kconfig方法修改。

1.3 gd32vf103v-eval构建

该文件夹就gd32vf103v-eval的具体BSP文件,文件结构如下:

poYBAGKy-6OADNpSAAF0rcbhAzE765.png

在后面将具体讲解如何构建该部分内容。

2 BSP移植

2.1GCC环境准备

RISC-V系列MCU使用的工具链是xPack GNU RISC-V Embedded GCC。

在配置交叉编译工具链之前,需要下载得到GCC工具链的安装包,然后解压即可,也可配置环境变量。

GCC工具链下载地址:https://github.com/xpack-dev-tools/riscv-none-embed-gcc-xpack/releases/

pYYBAGKy-62AaDX4AAEAYWmd8z0776.png

根据自己的主机选择相应的版本,下载完成解压即可。

2.2 BSP工程制作

1.构建基础工程

首先看看RT-Thread代码仓库中已有很多BSP,而我要移植的是RISC-V内核。这里参考GD32 ARM工程。最终目录如下:

risc-v
docs #说明文档
gd32vf103v-eval #具体BSP
libraries #库文件
  gd32_drivers
  GD32VF103_Firmware_Library # GD官方固件库
tools
  OpenOCD # OpenOCD下载调试工具
README.md

2.修改BSP构建脚本

bsp/gd32/risc-v/gd32vf103v-eval/SConstruct修改后的内容如下:

import os
import sys
import rtconfig

if os.getenv('RTT_ROOT'):
    RTT_ROOT = os.getenv('RTT_ROOT')
else:
    RTT_ROOT = os.path.normpath(os.getcwd() + '/../../../..')

sys.path = sys.path + [os.path.join(RTT_ROOT, 'tools')]
try:
    from building import *
except:
    print('Cannot found RT-Thread root directory, please check RTT_ROOT')
    print(RTT_ROOT)
    exit(-1)

TARGET = 'rtthread.' + rtconfig.TARGET_EXT

DefaultEnvironment(tools=[])
env = Environment(tools = ['mingw'],
    AS = rtconfig.AS, ASFLAGS = rtconfig.AFLAGS,
    CC = rtconfig.CC, CCFLAGS = rtconfig.CFLAGS,
    AR = rtconfig.AR, ARFLAGS = '-rc',
    CXX = rtconfig.CXX, CXXFLAGS = rtconfig.CXXFLAGS,
    LINK = rtconfig.LINK, LINKFLAGS = rtconfig.LFLAGS)
env.PrependENVPath('PATH', rtconfig.EXEC_PATH)
env['ASCOM'] = env['ASPPCOM']

Export('RTT_ROOT')
Export('rtconfig')

SDK_ROOT = os.path.abspath('./')

if os.path.exists(SDK_ROOT + '/libraries'):
    libraries_path_prefix = SDK_ROOT + '/libraries'
else:
    libraries_path_prefix = os.path.dirname(SDK_ROOT) + '/libraries'

SDK_LIB = libraries_path_prefix
Export('SDK_LIB')

# prepare building environment
# objs = PrepareBuilding(env, RTT_ROOT, has_libcpu=False)
objs = PrepareBuilding(env, RTT_ROOT)

gd32_library = 'GD32VF103_Firmware_Library'
rtconfig.BSP_LIBRARY_TYPE = gd32_library

# include libraries
objs.extend(SConscript(os.path.join(libraries_path_prefix, gd32_library, 'SConscript')))

# include drivers
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'gd32_drivers', 'SConscript')))

# make a building
DoBuilding(TARGET, objs)

该文件用于链接所有的依赖文件,并调用make进行编译。该文件主要修改固件库的路径。

bsp/gd32/risc-v/gd32vf103v-eval/rtconfig.py修改后的内容如下:

import os

# toolchains options
ARCH='risc-v'
CPU='bumblebee'
CROSS_TOOL='gcc'

# bsp lib config
BSP_LIBRARY_TYPE = None

if os.getenv('RTT_CC'):
    CROSS_TOOL = os.getenv('RTT_CC')
if os.getenv('RTT_ROOT'):
    RTT_ROOT = os.getenv('RTT_ROOT')

# cross_tool provides the cross compiler
# EXEC_PATH is the compiler execute path, for example, CodeSourcery, Keil MDK, IAR
if CROSS_TOOL == 'gcc':
    PLATFORM  = 'gcc'
    EXEC_PATH = EXEC_PATH  = r'D:/gcc/xpack-riscv-none-embed-gcc-10.2.0-1.2/bin'
else:
    print('Please make sure your toolchains is GNU GCC!')
    exit(0)

#if os.getenv('RTT_EXEC_PATH'):
#   EXEC_PATH = os.getenv('RTT_EXEC_PATH')

CORE = 'risc-v'
BUILD = 'debug'
MAP_FILE = 'rtthread.map'
LINK_FILE = '../libraries/GD32VF103_Firmware_Library/RISCV/env_Eclipse/GD32VF103xB.lds'

if PLATFORM == 'gcc':
    # toolchains
    PREFIX = 'riscv-none-embed-'
    CC = PREFIX + 'gcc'
    AS = PREFIX + 'gcc'
    AR = PREFIX + 'ar'
    CXX = PREFIX + 'g++'
    LINK = PREFIX + 'gcc'
    TARGET_EXT = 'elf'
    SIZE = PREFIX + 'size'
    OBJDUMP = PREFIX + 'objdump'
    OBJCPY = PREFIX + 'objcopy'

    DEVICE = ' -march=rv32imac -mabi=ilp32 -DUSE_PLIC -DUSE_M_TIME -DNO_INIT -mcmodel=medany -msmall-data-limit=8 -L. -nostartfiles-lc '
    CFLAGS = DEVICE
    CFLAGS += ' -save-temps=obj'
    AFLAGS = '-c'+ DEVICE + ' -x assembler-with-cpp'
    AFLAGS += ' -Iplatform -Ilibraries/RISCV/include -Ilibraries/RISCV/env_Eclipse'
    LFLAGS = DEVICE
    LFLAGS += ' -Wl,--gc-sections,-cref,-Map=' + MAP_FILE
    LFLAGS += ' -T ' + LINK_FILE
    LFLAGS += ' -Wl,-wrap=memset'

    CPATH = ''
    LPATH = ''

    if BUILD == 'debug':
        CFLAGS += ' -O0 -g3'
        AFLAGS += ' -g3'
    else:
        CFLAGS += ' -O2'

    CXXFLAGS = CFLAGS 

    POST_ACTION = OBJCPY + ' -O binary $TARGET rtthread.bin\n' + SIZE + ' $TARGET \n'

def dist_handle(BSP_ROOT, dist_dir):
    import sys
    cwd_path = os.getcwd()
    sys.path.append(os.path.join(os.path.dirname(BSP_ROOT), 'tools'))
    from sdk_dist import dist_do_building
dist_do_building(BSP_ROOT, dist_dir)

该文件编译参数,主要关注链接脚本和交叉编译工具链,工具链的地址需要根据实际的地址修改,gd32vf103v-eval开发板使用的芯片是GD32VF103VB,因此其链接脚本是GD32VF103xB.lds。

3.修改board文件夹

(1)修改bsp/gd32/risc-v/gd32vf103v-eval/board/Kconfig文件

修改后内容如下:

menu "Hardware Drivers Config"

config SOC_SERIES_GD32VF103V
    bool
    default y

config SOC_GD32VF103V
    bool
    select SOC_SERIES_GD32VF103V
    select RT_USING_COMPONENTS_INIT
    select RT_USING_USER_MAIN
    default y

menu "Onboard Peripheral Drivers"

endmenu

menu "On-chip Peripheral Drivers"

    config BSP_USING_GPIO
        bool "Enable GPIO"
        select RT_USING_PIN
        default y

    menuconfig BSP_USING_UART
      bool "Enable UART"
        default y
        select RT_USING_SERIAL
        if BSP_USING_UART
            config BSP_USING_UART0
                bool "Enable UART0"
                default y

            config BSP_UART0_RX_USING_DMA
                bool "Enable UART0 RX DMA"
                depends on BSP_USING_UART0 
                select RT_SERIAL_USING_DMA
                default n

            config BSP_USING_UART1
                bool "Enable UART1"
                default n

          config BSP_UART1_RX_USING_DMA
                bool "Enable UART1 RX DMA"
                depends on BSP_USING_UART1 
                select RT_SERIAL_USING_DMA
                default n

            config BSP_USING_UART2
                bool "Enable UART2"
                default n

            config BSP_UART2_RX_USING_DMA
                bool "Enable UART2 RX DMA"
                depends on BSP_USING_UART2 
                select RT_SERIAL_USING_DMA
                default n

            config BSP_USING_UART3
                bool "Enable UART3"
                default n

            config BSP_UART3_RX_USING_DMA
                bool "Enable UART3 RX DMA"
                depends on BSP_USING_UART3 
                select RT_SERIAL_USING_DMA
                default n

            config BSP_USING_UART4
                bool "Enable UART4"
                default n

            config BSP_UART4_RX_USING_DMA
                bool "Enable UART4 RX DMA"
                depends on BSP_USING_UART4 
                select RT_SERIAL_USING_DMA
                default n
        endif

    menuconfig BSP_USING_SPI
        bool "Enable SPI BUS"
        default n
        select RT_USING_SPI
        if BSP_USING_SPI
            config BSP_USING_SPI1
                bool "Enable SPI1 BUS"
                default n

            config BSP_SPI1_TX_USING_DMA
                bool "Enable SPI1 TX DMA"
                depends on BSP_USING_SPI1
                default n
               
            config BSP_SPI1_RX_USING_DMA
                bool "Enable SPI1 RX DMA"
                depends on BSP_USING_SPI1
                select BSP_SPI1_TX_USING_DMA
                default n
        endif

    menuconfig BSP_USING_I2C1
        bool "Enable I2C1 BUS (software simulation)"
        default n
        select RT_USING_I2C
        select RT_USING_I2C_BITOPS
        select RT_USING_PIN
        if BSP_USING_I2C1
            config BSP_I2C1_SCL_PIN
                int "i2c1 scl pin number"
                range 1 216
                default 24
            config BSP_I2C1_SDA_PIN
                int "I2C1 sda pin number"
                range 1 216
                default 25
        endif

    menuconfig BSP_USING_ADC
        bool "Enable ADC"
        default n
        select RT_USING_ADC
        if BSP_USING_ADC
            config BSP_USING_ADC0
                bool "Enable ADC0"
                default n

            config BSP_USING_ADC1
                bool "Enable ADC1"
                default n
        endif

    menuconfig BSP_USING_TIM
        bool "Enable timer"
        default n
        select RT_USING_HWTIMER
        if BSP_USING_TIM
            config BSP_USING_TIM10
                bool "Enable TIM10"
                default n

            config BSP_USING_TIM11
                bool "Enable TIM11"
                default n

            config BSP_USING_TIM12
                bool "Enable TIM13"
                default n
        endif

    menuconfig BSP_USING_ONCHIP_RTC
        bool "Enable RTC"
        select RT_USING_RTC
        default n
        if BSP_USING_ONCHIP_RTC
            choice
                prompt "Select clock source"
                default BSP_RTC_USING_LSE

                config BSP_RTC_USING_LSE
                    bool "RTC USING LSE"

                config BSP_RTC_USING_LSI
                    bool "RTC USING LSI"
            endchoice
        endif

    config BSP_USING_WDT
        bool "Enable Watchdog Timer"
        select RT_USING_WDT
        default n

    source "../libraries/gd32_drivers/Kconfig"

endmenu

menu "Board extended module Drivers"

endmenu

endmenu

这个文件就是配置板子驱动的,这里可根据实际需求添加。

(2)修改bsp/gd32/risc-v/gd32vf103v-eval/board/SConscript文件

修改后内容如下:

import os
import rtconfig
from building import *

Import('SDK_LIB')

cwd = GetCurrentDir()

# add general drivers
src = Split('''
board.c
''')

path = [cwd]

startup_path_prefix = SDK_LIB
   
if rtconfig.CROSS_TOOL == 'gcc':
    src += [startup_path_prefix + '/GD32VF103_Firmware_Library/RISCV/env_Eclipse/start.S']
    src += [startup_path_prefix + '/GD32VF103_Firmware_Library/RISCV/env_Eclipse/entry.S']

CPPDEFINES = ['GD32VF103V_EVAL']
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = path, CPPDEFINES = CPPDEFINES)


Return('group')

该文件主要添加board文件夹的.c文件和头文件路径。另外根据开发环境选择相应的汇编文件,和前面的libraries的SConscript语法是一样,文件的结构都是类似的,这里就没有注释了。

到这里,基本所有的依赖脚本都配置完成了。

4.固件库修改

(1)修改bsp/gd32/risc-v/libraries/GD32VF103_Firmware_Library/RISCV/env_Eclipse/start.S

GCC环境下的启动是由 entry()函数调用的启动函数 rt_thread_startup(),所以需要修改启动文的C语言入口。

pYYBAGKy_BmAA646AAAvBLhbmHU793.png

(2)修改bsp/gd32/risc-v/libraries/GD32VF103_Firmware_Library/RISCV/env_Eclipse/GD32VF103xB.lds

GD32VF103xB.lds文件需要新增RT-Thread堆栈的位置,否则无法正常运转,新增代码如下:

/* section information for finsh shell */
. = ALIGN(4);
__fsymtab_start = .;
KEEP(*(FSymTab))
__fsymtab_end = .;
. = ALIGN(4);
__vsymtab_start = .;
KEEP(*(VSymTab))
__vsymtab_end = .;
. = ALIGN(4);

/* section information for initial. */
. = ALIGN(4);
__rt_init_start = .;
KEEP(*(SORT(.rti_fn*)))
__rt_init_end = .;
. = ALIGN(4);

/* section information for modules */
. = ALIGN(4);
__rtmsymtab_start = .;
KEEP(*(RTMSymTab))
__rtmsymtab_end = .;

poYBAGKy_BmAJ8ROAAD-d46kSFk314.png

5.驱动修改

一个基本的BSP中,串口是必不可少的,所以还需要编写串口驱动,这里使用的串口0作为调试串口。

板子上还有LED灯,主要编写GPIO驱动即可。

关于串口和LED的驱动可以查看源码,这里就不贴出来了。

6.应用开发

笔者在applications的main.c中添加LED的应用代码,

#include 
#include 
#include 
#include 

/* defined the LED1 pin: PC0 */
#define LED1_PIN GET_PIN(C, 0)

int main(void)
{
    int count = 1;

    /* set LED1 pin mode to output */
    rt_pin_mode(LED1_PIN, PIN_MODE_OUTPUT);

    while (count++)
    {
        rt_pin_write(LED1_PIN, PIN_HIGH);
        rt_thread_mdelay(500);
        rt_pin_write(LED1_PIN, PIN_LOW);
        rt_thread_mdelay(500);
    }

    return RT_EOK;
}

当然,这需要GPIO驱动的支持。

7.使用ENV编译工程

在env中执行:scons

poYBAGKy_CWAZay7AACmGUlY3mk003.png

编译成功打印信息如下:

pYYBAGKy_CyAej0OAABPeGMO-rg604.png

8.使用VS Code开发GD32

在env中执行:scons --target=vsc

poYBAGKy_DOAUB1eAAA-LhYArog166.png

这样就可方便使用VSCode开发GD32了,当然,这里只是生成了c_cpp_properties.json,要想使用VS Code下载代码还需要更多的配置,下一节讲解。

2.3固件下载

前面使用ENV成功编译GD32VF103V-SEVAL的固件,那么接下来就是下载环节,下载方式很多,笔者这里讲解使用OpenOCD下载。

OpenOCD是用于对RISC-V进行下载仿真的软件工具,是一个开源软件包。当然啦,要想使用OpenOCD下载固件,需要GD-Link或者J-Link的支持。OpenOCD软件包已经放在bsp/gd32/risc-v/tools,只需要简单配置就可以,笔者这里使用VS Code开发。

1.新建bsp/gd32/risc-v/gd32vf103v-eval/.vscode/tasks.json

tasks.json的作用就是配置工程的编译、下载等工作。如果没有则需要创建tasks.json文件,内容如下:

{
    "version":"2.0.0",
    "tasks": [
        {
            "label":"download",
            "type":"shell",
            "command":"../tools/OpenOCD/bin/openocd.exe",
            "args": [
                "-f",
                "../tools/interface/openocd_gdlink_riscv.cfg",
                "-c",
                "program rtthread.elf exit"
            ] 
        }
    ]
}

这个文件创建了一个任务,任务名为download,用于在线下载固件。

选择“终端->运行任务…”

poYBAGKy_EiAL8a6AABy-FdvgFY097.png

选择task中配置的命令download。

poYBAGKy_E6AJ6mxAABZCLXgt20338.png

稍等片刻,即可下载成功。

pYYBAGKy_FWACD_mAAEvOwr2rE8015.png

固件下载成后,接上串口0,打印信息如下:

poYBAGKy_FuAOSXlAAAYTDvdwus328.png

同时LED会不断闪烁。

【BUG修复】

老版本的固件库在启动文件中清除中断,复位时会打印两次版本信息,如下所示:

poYBAGKy_GeAMXlXAAAxKnowRXE081.png

新版本的固件库不会出现该问题,因此建议大家使用笔者笔者提供的代码,笔者的代码是最新的固件库,而且驱动更加完善。

关于GD32 RISC-V系列的BSP的移植就到这里了,当然还有很多内容,这里只是抛砖引玉。最后希望更多的朋友加入进来,为国产RTOS贡献自己的力量吧。

GD32 BSP地址:https://gitee.com/ouxiaolong/GD32_RT-Thread

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • RTOS
    +关注

    关注

    22

    文章

    817

    浏览量

    119715
  • BSP
    BSP
    +关注

    关注

    1

    文章

    87

    浏览量

    26178
  • RT-Thread
    +关注

    关注

    31

    文章

    1293

    浏览量

    40229
  • GD32
    +关注

    关注

    7

    文章

    404

    浏览量

    24382
  • RISC-V
    +关注

    关注

    45

    文章

    2292

    浏览量

    46247
收藏 人收藏

    评论

    相关推荐

    GD32407V-START开发板的BSP框架制作移植

    RT-Thread中GD系列BSP,都是玩家各自为政,每个人都是提交自己使用的板子的BSP,充斥着大量冗余的代码,对于有强迫症的我就非常不爽,就根据手头的板子,参看STM32的
    的头像 发表于 06-22 08:54 4585次阅读
    <b class='flag-5'>GD32407V</b>-START开发板的<b class='flag-5'>BSP</b><b class='flag-5'>框架</b><b class='flag-5'>制作</b>与<b class='flag-5'>移植</b>

    RISC-V 跑大模型(二):LLaMA零基础移植教程

    这是RISC-V跑大模型系列的第二篇文章,主要教大家如何将LLaMA移植RISC-V环境里。
    的头像 发表于 07-17 16:16 1415次阅读
    <b class='flag-5'>RISC-V</b> 跑大模型(二):LLaMA零基础<b class='flag-5'>移植</b>教程

    拥抱RISC-V的开发世界 兆易创新推GD32VF103系列RISC-V MCU

    兆易创新推出GD32V系列RISC-V内核32位通用MCU新品,现在,直接使用GD32V系列32位通用MCU以创意灵感拥抱
    发表于 08-23 10:05 7974次阅读

    如何移植RT-ThreadNano到RISC-V架构?

    本文介绍了如何移植 RT-Thread Nano 到 RISC-V 架构,以 Eclipse GCC 环境为例,基于一个 GD32V103 MCU 的基础工程作为示例进行讲解。
    发表于 03-29 06:10

    GD32单片机简析

    ArmCortex-M3/M4/M23/M33 MCU产品系列,并且在全球范围内首个推出RISC-V内核通用32位MCU产品系列,如图所示GD32 MCU产品家族目前拥有28个
    发表于 12-13 06:29

    移植RISC-V CH32V103R BSP的教程

    toolchains is GNU GCC!')exit(0)添加RISC-V 内核移植API文件在RISC-V内核架构设计上,common文件夹一般来用存放的是不同RISC-V内核
    发表于 03-14 15:08

    【原创精选】RT-Thread征文精选威廉希尔官方网站 文章合集

    。RT-Thread自动初始化详解GD32 RISC-V系列 BSP框架制作
    发表于 07-26 14:56

    赛昉科技成立RISC-V Multimedia SIG,推动openKylin on RISC-V生态发展

    操作系统上适配RISC-V软硬件编解码器,保证其在openKylin桌面上的正常运行。3、拓展openKylin RISC-V生态在移植和适配的应用框架上开发各类图形应用软件以及图形和
    发表于 04-03 18:33

    GD32移植到STM32开发平台

    GD32移植到STM32开发平台
    发表于 12-02 14:51 28次下载
    <b class='flag-5'>GD32</b><b class='flag-5'>移植</b>到STM32开发平台

    如何进行GD32F103系列BSP制作

    系列,但从2020年下半年开始,国内出现史无前例的芯片缺货潮,我们参考STM32F103系列进行GD32F103系列BSP
    的头像 发表于 05-12 11:00 3087次阅读

    Ashling为兆易创新GD32 RISC-V MCU提供高效RiscFree™ C/C++工具链

    GD32 MCU家族于业界率先推出的基于RISC-V内核的通用产品系列,以均衡的处理性能、低功耗和丰富外设资源为RISC-V威廉希尔官方网站 进入市场主流应用提供了高性价比的创新之选。
    发表于 06-24 17:06 1188次阅读

    AN067 GD32RISC-V MCU Windows系统下Eclipse开发教程

    AN067 GD32 RISC-V MCU Windows系统下Eclipse开发教程
    发表于 03-01 18:55 0次下载
    AN067 <b class='flag-5'>GD32RISC-V</b> MCU Windows系统下Eclipse开发教程

    RISC-V跑大模型(二):LLaMA零基础移植教程

    这是RISC-V跑大模型系列的第二篇文章,主要教大家如何将LLaMA移植RISC-V环境里。
    的头像 发表于 07-10 10:10 1092次阅读
    <b class='flag-5'>RISC-V</b>跑大模型(二):LLaMA零基础<b class='flag-5'>移植</b>教程

    推出采用GD32 RISC-V的MCU

    推出采用GD32 RISC-V的MCU ppt分享
    发表于 07-14 17:15 0次下载

    gd32和stm32的编程区别

    的,本文将就此进行详细地解析。 一、GD32和STM32的概述 GD32和STM32是龙芯(RISC-V)和意法半导体(ARM Cortex-M)两家公司推出的芯片,由于两家公司的巨大影响力,它们在
    的头像 发表于 08-16 11:32 7085次阅读