0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

介绍几个脉冲神经网络的开源项目

OpenFPGA 来源:OpenFPGA 作者:OpenFPGA 2022-05-31 09:23 次阅读

脉冲神经网络( Spiking neural network-SNN ) 是更接近自然神经网络的人工神经网络。除了神经元和突触状态之外,SNN 还将时间概念纳入其操作模型。这个想法是, SNN 中的神经元不会在每个传播周期传输信息(就像典型的多层感知器网络一样),而是仅在膜电位发生时才传输信息 - 与膜电荷相关的神经元的内在质量 - 达到特定值,称为阈值。当膜电位达到阈值时,神经元会放电,并产生一个信号,该信号传播到其他神经元,这些神经元又会根据该信号增加或降低它们的电位。在阈值交叉时触发的神经元模型也称为脉冲神经元模型。

3588ec0c-e07f-11ec-ba43-dac502259ad0.png

SNN 原则上可以应用于与传统 ANN 相同的应用。此外,SNN 可以interwetten与威廉的赔率体系 生物有机体的中枢神经系统,例如在事先不了解环境的情况下寻找食物的昆虫。由于它们的相对真实性,它们可用于研究生物神经回路的运作。从关于生物神经元电路的拓扑结构及其功能的假设开始,可以将该电路的记录与相应 SNN 的输出进行比较,从而评估该假设的合理性。然而,SNN 缺乏有效的训练机制,这可能会抑制某些应用,包括计算机视觉任务。

35b93b8c-e07f-11ec-ba43-dac502259ad0.png

基于 FTJ 的人工突触

下面介绍几个SNN的开源项目。

关于CNN vs. RNN vs. ANN区别,请看下文:

35ead3ea-e07f-11ec-ba43-dac502259ad0.png

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/

https://zhuanlan.zhihu.com/p/107993566

ODIN Spiking Neural Network (SNN) Processor

https://github.com/ChFrenkel/ODIN

363a5aa0-e07f-11ec-ba43-dac502259ad0.png

项目介绍

ODIN 是一种在线学习数字脉冲神经处理器,在 2019 年发表在IEEE Transactions on Biomedical Circuits and Systems期刊上,在鲁汶天主教大学 ( UCLouvain ) 采用 28 纳米 FDSOI CMOS 设计和原型制作。ODIN 基于单个 256 神经元 64k 突触横杆神经突触核心,具有以下关键特性:

基于脉冲依赖的突触可塑性 (SDSP) 在线学习,

神经元可以再现 20 种 Izhikevich 行为。

36892b08-e07f-11ec-ba43-dac502259ad0.png

因此,ODIN 是一个用于边缘学习的多功能实验平台,同时与所有先前提出的尖峰神经网络 (SNN) 相比,记录神经元和突触密度更高。

36d9644c-e07f-11ec-ba43-dac502259ad0.png

使用源代码时,请引用相关论文:

https://arxiv.org/pdf/1804.07858.pdf

同时该项目也有详细的设计文档:

https://github.com/ChFrenkel/ODIN/tree/master/doc

HedgeHog-Fused-Spiking-Neural-Network-Emulator-Compute-Engine

https://github.com/jerry-D/HedgeHog-Fused-Spiking-Neural-Network-Emulator-Compute-Engine

用于 RISC-V 的 HedgeHog 融合脉冲神经网络仿真器/计算引擎(有FPGA验证)

374dd3e0-e07f-11ec-ba43-dac502259ad0.png

介绍

在 Xilinx Kintex Ultra Plus 中运行时钟频率约为 100MHz,它可以执行大约 312qty。每个时钟周期的浮点运算约每秒 310 亿次浮点运算。指令集中的累积和激活位可以连接8个神经元膜。如果你正在探索或试验使用 RISC-V 作为主机 CPU 的 FPGA 嵌入式 AI 应用程序的脉冲神经网络,那么 SYMPL HedgeHog 非常适合你。

这是有关 HedgeHog FSNN 模拟器/计算引擎的 .pdf 信息表:

https://github.com/jerry-D/HedgeHog-Fused-Spiking-Neural-Network-Emulator-Compute-Engine/blob/master/HedgeHog.pdf

在 Xilinx Vivado IDE 中进行仿真

Vivado需要的所有 Verilog RTL 源文件都位于此存储库的“RTL”、“ASM”、“test bench”和“sim”文件夹中。顶级模块是“HedgeHog.v”。建议第一次在 Vivado 中创建项目时,选择 Xilinx Kintex Ultra+ xcku5p-ffvd-900-3-e 作为目标器件。在 Vivado 中创建项目后,需要设置“HedgeHog.v”为项目“Top”文件。

下一步是将“SpiNNe_tb.v”测试文件拉入 Vivado 作为激励。然后向下滑动到“Simulation Sources”>“sim_1”,对测试文件“SpiNNe_tb.v”执行与“HedgeHog”相同的操作,在仿真源中将其设置为“top”。

完成后,单击“运行仿真”。之后,会注意到仿真失败。这是因为仿真需要“spikeDemo.HEX”程序来执行 HedgeHog。为了解决这个问题,将“spikeDemo.HEX”文件粘贴到仿真工作目录中:“C:projectNameprojectName.simsim_1ehavxsimspikeDemo.HEX”,在“ASM”文件夹中可以找到汇编语言源代码和对象列表。

379f6598-e07f-11ec-ba43-dac502259ad0.png

接下来,演示仿真,它只是将一系列脉冲推入 HedgeHog,需要“spike_trains.txt”尖峰输入文件和位于“sim”文件夹中的“weights.txt”文件,因此将这两个文件粘贴到与放置“spikeDemo .HEX”文件的工作目录相同。

完成后,再次单击“运行仿真”按钮以启动仿真即可看到仿真结果。

该项目还有很多详细的设计文档,就不一一说明了。

37de5de8-e07f-11ec-ba43-dac502259ad0.png

CSE237D-PYNQ-SNN-Accelerator

https://github.com/snagiri/CSE237D-PYNQ-SNN-Accelerator

38001136-e07f-11ec-ba43-dac502259ad0.png

383b73de-e07f-11ec-ba43-dac502259ad0.png

脉冲神经网络在 PYNQ-Z1 板上的硬件实现

S2NN-HLS

https://github.com/eejlny/S2NN-HLS

该项目提出了一种用于脉冲神经网络的高性能架构,可优化在主存储器中的配置数据的数据精度和流式传输。神经网络基于 Izhikevich 模型,并使用HLS映射到 CPU-FPGA 混合设备。实验表明,将电压和频率缩放应用于 DDR 存储器和可编程逻辑可以分别将其能量需求降低高达 77% 和 76%。

详细设计论文:

http: //dx.doi.org/10.1016 /j.micpro.2017.06.018。

Conversion from CNNs to SNNs

https://github.com/Dengyu-Wu/spkeras

38c3358a-e07f-11ec-ba43-dac502259ad0.png

SpKeras 可以通过以下步骤获取和评估基于速率的脉冲神经网络 (SNN):

使用 Tensorflow-keras 预训练卷积神经网络 (CNN)

使用 SpKeras 将 CNN 转换为 SNN

评估 SNN 并获取参数,例如权重、偏差和阈值

其他

https://github.com/oshears/SNN-FPGA-Implementation

https://github.com/jasha64/SNN-FPGA

https://github.com/Minz9/SNN-on-FPGA

https://github.com/oshears/fpga_snn_models

总结

今天介绍了主要3个SNN的项目,主要是SNN复杂度较TPU或者CNN或者DNN又高了几个台阶,所以用它来直接对FPGA进行移植难度很大,建议对第一个前三个项目进行研究,其他都不怎么推荐(想研究也没有文档)。

关于DNN或者CNN或者SNN也介绍了几十个项目了,后面可能就不会出神经网络的项目了,感觉大家也看腻了,后续会出一些视频处理或者图像处理的项目。

最后还是强推一波官方神经网络加速的项目:

官方提供的各种案例也是基本覆盖了常规应用。

最后,还是感谢各个大佬开源的项目,让我们受益匪浅。后面有什么感兴趣方面的项目,大家可以在后台留言或者加微信留言,今天就到这,我是爆肝的碎碎思,期待下期文章与你相见。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4772

    浏览量

    100845
  • 神经元
    +关注

    关注

    1

    文章

    363

    浏览量

    18465

原文标题:优秀的 Verilog/FPGA开源项目介绍(二十四)- 脉冲神经网络 (SNN)

文章出处:【微信号:Open_FPGA,微信公众号:OpenFPGA】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    LSTM神经网络的结构与工作机制

    的结构与工作机制的介绍: 一、LSTM神经网络的结构 LSTM神经网络的结构主要包括以下几个部分: 记忆单元(Memory Cell) : 记忆单元是LSTM
    的头像 发表于 11-13 10:05 411次阅读

    分享几个用FPGA实现的小型神经网络

    今天我们分享几个用FPGA实现的小型神经网络,侧重应用。
    的头像 发表于 07-24 09:30 1209次阅读
    分享<b class='flag-5'>几个</b>用FPGA实现的小型<b class='flag-5'>神经网络</b>

    脉冲神经网络怎么训练

    脉冲神经网络(SNN, Spiking Neural Network)的训练是一个复杂但充满挑战的过程,它模拟了生物神经元通过脉冲(或称为尖峰)进行信息传递的方式。以下是对
    的头像 发表于 07-12 10:13 627次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 1123次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 587次阅读

    递归神经网络与循环神经网络一样吗

    时具有各自的优势和特点。本文将介绍递归神经网络和循环神经网络的概念、结构、工作原理、优缺点以及应用场景。 递归神经网络(Recursive Neural Network,RvNN) 1
    的头像 发表于 07-05 09:28 900次阅读

    人工神经网络模型的分类有哪些

    详细介绍人工神经网络的分类,包括前馈神经网络、卷积神经网络、循环神经网络、深度神经网络、生成对抗
    的头像 发表于 07-05 09:13 1253次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 794次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1328次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 917次阅读

    反向传播神经网络和bp神经网络的区别

    反向传播神经网络(Backpropagation Neural Network,简称BP神经网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,以达到最小化误差的
    的头像 发表于 07-03 11:00 819次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 1216次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原理,包括其
    的头像 发表于 07-02 14:44 671次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 4220次阅读

    神经网络架构有哪些

    、语音识别、自然语言处理等多个领域。本文将对几种主要的神经网络架构进行详细介绍,包括前馈神经网络、循环神经网络、卷积神经网络、生成对抗
    的头像 发表于 07-01 14:16 721次阅读