0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NVIDIA基于物理学的神经网络

NVIDIA英伟达 来源:NVIDIA英伟达 作者:NVIDIA英伟达 2021-11-15 16:36 次阅读

NVIDIA 于 GTC 大会上发布的 AI 框架为工程师、科学家和研究者提供了一个可定制、易于采用的物理学工具包,使他们能够通过建立数字孪生神经网络模型加速解决当今一些最具挑战性的问题。

NVIDIA Modulus是一个用于开发物理学-机器学习模型的框架,它能够为缺乏 AI 专业知识,但对 AI 和物理驱动型数字孪生功能的需求快速增长的众多领域提供支持,例如蛋白质工程和气候科学领域。

数字孪生已成为解决从分子层面(如药物研发)到全球挑战(如气候变化)等各种问题的有力工具。NVIDIA Modulus 为科学家所提供的框架能够为复杂、动态的系统构建高精度数字复制品,从而推动各行业的新一代威廉希尔官方网站 突破。

基于物理学的神经网络

Modulus 训练神经网络使用基本的物理学定律interwetten与威廉的赔率体系 各领域中复杂系统的行为。从工业用例到气候科学,该代理模型可用于各种数字孪生应用。

与大多数基于 AI 的方法一样,Modulus 内置一个帮助管理观察或模拟数据的数据准备模块。它还能解释它所模拟的系统的几何图形以及输入几何图形所表示的空间的显式参数

Modulus 的关键工作流程和要素包括:

采样计划器:使用户能够选择一种方法(如准随机采样或重要性采样)来提高被训练模型的收敛性和准确性。

基于 Python 的 API:采取象征性管理偏微分方程并构建基于物理学的神经网络。

精选层和网络架构:经证明能够有效解决物理学问题。

物理学-机器学习引擎:使用这些输入来训练模型。所训练的模型能够使用 PyTorch 与 TensorFlow、使用 cuDNN 实现 GPU 加速并且使用 NVIDIA Magnum IO 实现多 GPU 和多节点扩展。

快速周转时间

GPU 加速工具包实现快速周转,补充传统的分析并实现更快的洞察。Modulus 使用户通过评估能够改变其参数的影响来探索系统的不同配置和场景。

基于高性能 TensorFlow 的 Modulus 实现使用 XLA 优化性能。XLA 是一个用于加速 TensorFlow 模型的特定领域线性代数编译器。它使用 Horovod 分布式深度学习训练框架实现多 GPU 扩展。

在完成模型训练后,Modulus 可以进行近乎实时的推理或互动式推理。相比之下,传统的分析每次运行时都要进行评估,而且每次评估的计算成本很高。

易于采用

Modulus 可定制并且易于采用。它能提供用于实现新物理学和几何学的 API。Modulus 在设计上可以使那些刚开始使用 AI 数字孪生应用的人能够快速将其用于工作。

该框架包括计算流体力学、热传导等入门分步教程。它还为应用领域提供了一个不断增长的实现列表,如湍流建模、瞬态波方程、纳维-斯托克斯方程、电磁学领域的麦克斯韦方程、反问题和其他多物理场问题。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    4990

    浏览量

    103117
  • AI
    AI
    +关注

    关注

    87

    文章

    30947

    浏览量

    269209
  • 机器学习
    +关注

    关注

    66

    文章

    8420

    浏览量

    132684

原文标题:GTC21 | NVIDIA 创建 AI 学习物理框架

文章出处:【微信号:NVIDIA_China,微信公众号:NVIDIA英伟达】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    一文详解物理信息神经网络

    物理信息神经网络 (PINN) 是一种神经网络,它将微分方程描述的物理定律纳入其损失函数中,以引导学习过程得出更符合基本物理定律的解。
    的头像 发表于 12-05 16:50 1474次阅读
    一文详解<b class='flag-5'>物理</b>信息<b class='flag-5'>神经网络</b>

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统神经网络
    的头像 发表于 11-15 14:53 476次阅读

    BP神经网络和卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1553次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 1108次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 585次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 785次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1311次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 897次阅读

    卷积神经网络与循环神经网络的区别

    在深度学习领域,卷积神经网络(Convolutional Neural Networks, CNN)和循环神经网络(Recurrent Neural Networks, RNN)是两种极其重要
    的头像 发表于 07-03 16:12 3343次阅读

    反向传播神经网络和bp神经网络的区别

    反向传播神经网络(Backpropagation Neural Network,简称BP神经网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,以达到最小化误差的
    的头像 发表于 07-03 11:00 819次阅读

    bp神经网络是深度神经网络

    BP神经网络(Backpropagation Neural Network)是一种常见的前馈神经网络,它使用反向传播算法来训练网络。虽然BP神经网络在某些方面与深度
    的头像 发表于 07-03 10:14 860次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 1204次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原理,包括其
    的头像 发表于 07-02 14:44 666次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 4106次阅读

    神经网络架构有哪些

    神经网络架构是机器学习领域中的核心组成部分,它们模仿了生物神经网络的运作方式,通过复杂的网络结构实现信息的处理、存储和传递。随着深度学习威廉希尔官方网站 的不断发展,各种神经网络架构被提出并广泛应用
    的头像 发表于 07-01 14:16 718次阅读