本文在探讨传统数据收发不足之后,介绍如何使用带 FIFO 的串口来减少接收中断次数,通过一种自定义通讯协议格式,给出帧打包方法;之后介绍一种特殊的串口数据发送方法,可在避免使用串口发送中断的情况下,提高系统的响应速度。
1. 简介
串口由于使用简单,价格低廉,配合 RS485 芯片可以实现长距离、抗干扰能力强的局域网络而被广泛使用。随着产品功能的增多,需要处理的任务也越来越复杂,系统任务也越来越需要及时响应。绝大多数的现代单片机(ARM7、Cortex-M3)串口都带有一定数量的硬件 FIFO,本文将介绍如何使用硬件 FIFO 来减少接收中断次数,提高发送效率。在此之前,先来列举一下传统串口数据收发的不足之处:
每接收一个字节数据,产生一次接收中断。不能有效的利用串口硬件 FIFO,减少中断次数。应答数据采用等待发送的方法。由于串行数据传输的时间远远跟不上 CPU 的处理时间,等待串口发送完当前字节再发送下一字节会造成 CPU 资源浪费,不利于系统整体响应(在 1200bps 下,发送一字节大约需要 10ms,如果一次发送几十个字节数据,CPU 会长时间处于等待状态)。应答数据采用中断发送。增加一个中断源,增加系统的中断次数,这会影响系统整体稳定性(从可靠性角度考虑,中断事件应越少越好)。针对上述的不足之处,将结合一个常用自定义通讯协议,提供一个完整的解决方案。
2. 串口 FIFO
串口 FIFO 可以理解为串口专用的缓存,该缓存采用先进先出方式。数据接收 FIFO 和数据发送 FIFO 通常是独立的两个硬件。串口接收的数据,先放入接收 FIFO 中,当 FIFO 中的数据达到触发值(通常触发值为 1、2、4、8、14 字节)或者 FIFO 中的数据虽然没有达到设定值但是一段时间(通常为 3.5 个字符传输时间)没有再接收到数据,则通知 CPU 产生接收中断;发送的数据要先写入发送 FIFO,只要发送 FIFO 未空,硬件会自动发送 FIFO 中的数据。写入发送 FIFO 的字节个数受 FIFO 最大深度影响,通常一次写入最多允许 16 字节。上述列举的数据跟具体的硬件有关,CPU 类型不同,特性也不尽相同,使用前应参考相应的数据手册。
3. 数据接收与打包
FIFO 可以缓存串口接收到的数据,因此我们可以利用 FIFO 来减少中断次数。以 NXP 的 lpc1778 芯片为例,接收 FIFO 的触发级别可以设置为 1、2、4、8、14 字节,推荐使用 8 字节或者 14 字节,这也是 PC 串口接收 FIFO 的默认值。这样,当接收到大量数据时,每 8 个字节或者 14 个字节才会产生一次中断(最后一次接收除外),相比接收一个字节即产生一个中断,这种方法串口接收中断次数大大减少。
将接收 FIFO 设置为 8 或者 14 字节也十分简单,还是以 lpc1778 为例,只需要设置 UART FIFO 控制寄存器 UnFCR 即可。
接收的数据要符合通讯协议规定,数据与协议是密不可分的。通常我们需要将接收到的数据根据协议打包成一帧,然后交由上层处理。下面介绍一个自定义的协议帧格式,并给出一个通用打包成帧的方法。
自定义协议格式如图 3-1 所示。
帧首:通常是 3~5 个 0xFF 或者 0xEE
地址号:要进行通讯的设备的地址编号,1 字节
命令号:对应不同的功能,1 字节
长度:数据区域的字节个数,1 字节
数据:与具体的命令号有关,数据区长度可以为 0,整个帧的长度不应超过 256 字节
校验:异或和校验(1 字节)或者 CRC16 校验(2 字节),本例使用 CRC16 校验
下面介绍如何将接收到的数据按照图 3-1 所示的格式打包成一帧。
3.1 定义数据结构
typedef struct {
uint8_t * dst_buf; // 指向接收缓存
uint8_t sfd; // 帧首标志,为 0xFF 或者 0xEE
uint8_t sfd_flag; // 找到帧首,一般是 3~5 个 FF 或 EE
uint8_t sfd_count; // 帧首的个数,一般 3~5 个
uint8_t received_len; // 已经接收的字节数
uint8_t find_fram_flag; // 找到完整帧后,置 1
uint8_t frame_len; // 本帧数据总长度,这个区域是可选的
}find_frame_struct;
3.2 初始化数据结构,一般放在串口初始化中
/**
* @brief 初始化寻找帧的数据结构
* @param p_fine_frame:指向打包帧数据结构体变量
* @param dst_buf:指向帧缓冲区
* @param sfd:帧首标志,一般为 0xFF 或者 0xEE
*/
void init_find_frame_struct(find_frame_struct * p_find_frame,uint8_t *dst_buf,uint8_t sfd)
{
p_find_frame-》dst_buf=dst_buf;
p_find_frame-》sfd=sfd;
p_find_frame-》find_fram_flag=0;
p_find_frame-》frame_len=10;
p_find_frame-》received_len=0;
p_find_frame-》sfd_count=0;
p_find_frame-》sfd_flag=0;
}
3.3 数据打包程序
/**
* @brief 寻找一帧数据 返回处理的数据个数
* @param p_find_frame:指向打包帧数据结构体变量
* @param src_buf:指向串口接收的原始数据
* @param data_len:src_buf 本次串口接收到的原始数据个数
* @param sum_len:帧缓存的最大长度
* @return 本次处理的数据个数
*/
uint32_t find_one_frame(find_frame_struct * p_find_frame,const uint8_t * src_buf,uint32_t data_len,uint32_t sum_len)
{
uint32_t src_len=0;
while(data_len--)
{
if(p_find_frame -》sfd_flag==0)
{ // 没有找到起始帧首
if(src_buf[src_len++]==p_find_frame -》sfd)
{
p_find_frame -》dst_buf[p_find_frame -》received_len++]=p_find_frame -》sfd;
if(++p_find_frame -》sfd_count==5)
{
p_find_frame -》sfd_flag=1;
p_find_frame -》sfd_count=0;
p_find_frame -》frame_len=10;
}
}
else
{
p_find_frame -》sfd_count=0;
p_find_frame -》received_len=0;
}
}
else
{ // 是否是“长度”字节? Y-》获取这帧的数据长度
if(7==p_find_frame -》received_len)
{
p_find_frame-》frame_len=src_buf[src_len]+5+1+1+1+2; // 帧首+地址号+命令号+数据长度+校验
if(p_find_frame-》frame_len》=sum_len)
{ // 这里处理方法根据具体应用不一定相同
MY_DEBUGF(SLAVE_DEBUG,(“数据长度超出缓存! ”));
p_find_frame-》frame_len= sum_len;
}
}
p_find_frame -》dst_buf[p_find_frame-》received_len++]=src_buf[src_len++];
if(p_find_frame -》received_len==p_find_frame -》frame_len)
{
p_find_frame -》received_len=0; // 一帧完成
p_find_frame -》sfd_flag=0;
p_find_frame -》find_fram_flag=1;
return src_len;
}
}
}
p_find_frame -》find_fram_flag=0;
return src_len;
}
使用例子:
定义数据结构体变量:
find_frame_structslave_find_frame_srt;
定义接收数据缓冲区:
#define SLAVE_REC_DATA_LEN 128
uint8_t slave_rec_buf[SLAVE_REC_DATA_LEN];
在串口初始化中调用结构体变量初始化函数:
init_find_frame_struct(&slave_find_frame_srt,slave_rec_buf,0xEE);
在串口接收中断中调用数据打包函数:
find_one_frame(&slave_find_frame_srt,tmp_rec_buf,data_len,SLAVE_REC_DATA_LEN);
其中,rec_buf 是串口接收临时缓冲区,data_len 是本次接收的数据长度。
4. 数据发送
前文提到,传统的等待发送方式会浪费 CPU 资源,而中断发送方式虽然不会造成 CPU 资源浪费,但又增加了一个中断源。在我们的使用中发现,定时器中断是几乎每个应用都会使用的,我们可以利用定时器中断以及硬件 FIFO 来进行数据发送,通过合理设计后,这样的发送方法即不会造成 CPU 资源浪费,也不会多增加中断源和中断事件。
需要提前说明的是,这个方法并不是对所有应用都合适,对于那些没有开定时器中断的应用本方法当然是不支持的,另外如果定时器中断间隔较长而通讯波特率又特别高的话,本方法也不太适用。公司目前使用的通讯波特率一般比较小(1200bps、2400bps),在这些波特率下,定时器间隔为 10ms 以下(含 10ms)就能满足。如果定时器间隔为 1ms 以下(含 1ms),是可以使用 115200bps 的。
本方法主要思想是:定时器中断触发后,判断是否有数据要发送,如果有数据要发送并且满足发送条件,则将数据放入发送 FIFO 中,对于 lpc1778 来说,一次最多可以放 16 字节数据。之后硬件会自动启动发送,无需 CPU 参与。
下面介绍如何使用定时器发送数据,硬件载体为 RS485。因为发送需要操作串口寄存器以及 RS485 方向控制引脚,需跟硬件密切相关,以下代码使用的硬件为 lpc1778,但思想是通用的。
4.1 定义数据结构
/*串口帧发送结构体*/
typedef struct {
uint16_t send_sum_len; // 要发送的帧数据长度
uint8_t send_cur_len; // 当前已经发送的数据长度
uint8_t send_flag; // 是否发送标志
uint8_t * send_data; // 指向要发送的数据缓冲区
}uart_send_struct;
4.2 定时处理函数
/**
* @brief 定时发送函数,在定时器中断中调用,不使用发送中断的情况下减少发送等待
* @param UARTx:指向硬件串口寄存器基地址
* @param p:指向串口帧发送结构体变量
*/
#define FARME_SEND_FALG 0x5A
#define SEND_DATA_NUM 12
static void uart_send_com(LPC_UART_TypeDef *UARTx,uart_send_struct *p)
{
uint32_t i;
uint32_t tmp32;
if(UARTx-》LSR &(0x01《《6)) // 发送为空
{
if(p-》send_flag==FARME_SEND_FALG)
{
RS485ClrDE; // 置 485 为发送状态
tmp32=p-》send_sum_len-p-》send_cur_len;
if(tmp32》SEND_DATA_NUM) // 向发送 FIFO 填充字节数据
{
for(i=0;i《SEND_DATA_NUM;i++)
{
UARTx-》THR=p-》send_data[p-》send_cur_len++];
}
}
else
{
for(i=0;i《tmp32;i++)
{
UARTx-》THR=p-》send_data[p-》send_cur_len++];
}
p-》send_flag=0;
}
}
else
{
RS485SetDE;
}
}
}
其中,RS485ClrDE 为宏定义,设置 RS485 为发送模式;RS485SetDE 也为宏定义,设置 RS485 为接收模式。
使用例子:
定义数据结构体变量:
uart_send_struct uart0_send_str;
定义发送缓冲区:
uint8_t uart0_send_buf[UART0_SEND_LEN];
根据使用的硬件串口,对定时处理函数做二次封装:
void uart0_send_data(void)
{
uart_send_com(LPC_UART0,&uart0_send_str);
}
将封装函数 uart0_send_data();放入定时器中断处理函数中;
在需要发送数据的地方,设置串口帧发送结构体变量:
uart0_send_str.send_sum_len=data_len; //data_len 为要发送的数据长度
uart0_send_str.send_cur_len=0; // 固定为 0
uart0_send_str.send_data=uart0_send_buf; // 绑定发送缓冲区
uart0_send_str.send_flag=FARME_SEND_FALG; // 设置发送标志
5. 总结
本文主要讨论了一种高效的串口数据收发方法,并给出了具体的代码实现。在当前处理器任务不断增加的情况下,提供了一个占用资源少,可提高系统整体性能的新的思路。
责任编辑:haq
-
数据
+关注
关注
8文章
6967浏览量
88923 -
串口
+关注
关注
14文章
1550浏览量
76372
原文标题:串口传输“阻塞”怎么办?一招教你解决
文章出处:【微信号:hoperun300339,微信公众号:润和软件】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论