0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

OpenCV的数字识别实践案例

华为开发者社区 来源:CSDN威廉希尔官方网站 社区 作者:华为云 2021-03-26 17:16 次阅读

前言

实践是检验真理的唯一标准。因为觉得一板一眼地学习OpenCV太过枯燥,于是在网上找了一个以项目为导向的教程学习。话不多说,动手做起来。

1、案例介绍

提供信用卡上的数字模板:

要求:识别出信用卡上的数字,并将其直接打印在原图片上。虽然看起来很蠢,但既然可以将数字打印在图片上,说明已经成功识别数字,因此也可以将其转换为数字文本保存。车牌号识别等项目的思路与此案例类似。

示例:

原图

处理后的图

步骤

大致分为如下几个步骤:

1.模板读入

2.模板预处理,将模板数字分开,并排序

3.输入图像预处理,将图像中的数字部分提取出来

4.将数字与模板数字进行匹配,匹配率最高的即为对应数字。

1、模板读入,以及一些包的导入,函数定义等

import cv2 as cvimport numpy as npimport myutilsdef cv_show(name, img): # 自定义的展示函数 cv.imshow(name, img) cv.waitKey(0)# 读入模板图n = ‘text’img = cv.imread(“images/ocr_a_reference.png”)# cv_show(n, template) # 自定义的展示函数,方便显示图

2、模板预处理,将模板数字分开,并排序

模板的预处理顺序:灰度图,二值化,再进行轮廓检测。需要注意的是openCV检测轮廓时是检测白色边框,因此要将模板图的数字二值化变为白色。

# 模板转换为灰度图ref = cv.cvtColor(img, cv.COLOR_BGR2GRAY)# cv_show(n, ref)

# 转换为二值图,把数字部分变为白色ref = cv.threshold(ref, 10, 255, cv.THRESH_BINARY_INV)[1] # 骚写法,函数多个返回值为元组,这里取第二个返回值cv_show(n, ref)

# 对模板进行轮廓检测,得到轮廓信息refCnts, hierarchy = cv.findContours(ref.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)cv.drawContours(img, refCnts, -1, (0, 0, 255), 2) # 第一个参数为目标图像# cv_show(n, img

红色部分即为检测出的轮廓。接下来进行轮廓排序,因为检测出的轮廓是无序的,因此要按照轮廓的左上角点的x坐标来排序。轮廓排序后按顺序放入字典,则字典中的键值对是正确匹配的,如‘0’对应轮廓0 ,‘1’对应轮廓1。

# 轮廓排序refCnts = myutils.sort_contours(refCnts)[0]digits = {}

# 单个轮廓提取到字典中for (i, c) in enumerate(refCnts): (x, y, w, h) = cv.boundingRect(c) roi = ref[y:y + h, x:x + w] # 在模板中复制出轮廓 roi = cv.resize(roi, (57, 88)) # 改成相同大小的轮廓 digits[i] = roi # 此时字典键对应的轮廓即为对应数字。如键‘1’对应轮廓‘1’

至此,模板图处理完毕。

3、输入图像预处理,将图像中的数字部分提取出来

在此步骤中需要将信用卡上的每个数字提取出来,并与上一步得到的模板一一匹配。首先初始化卷积核,方便之后tophat操作以及闭运算操作使用。

# 初始化卷积核rectKernel = cv.getStructuringElement(cv.MORPH_RECT, (9, 3))sqKernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))

接下来读入图片,调整图片大小,转换为灰度图。

# 待分析图片读入,预处理card_image = cv.imread(“images/credit_card_01.png”)# cv_show(‘a’, card_image)card_image = myutils.resize(card_image, width=300) # 更改图片大小gray = cv.cvtColor(card_image, cv.COLOR_BGR2GRAY)# cv_show(‘gray’, gray)

然后进行tophat操作,tophat可以突出图片中明亮的区域,过滤掉较暗的部分:

tophat = cv.morphologyEx(gray, cv.MORPH_TOPHAT, rectKernel)# cv_show(‘tophat’, tophat)

再通过sobel算子检测边缘,进行一次闭操作,二值化,再进行一次闭操作,填补空洞。

# x方向的Sobel算子gradX = cv.Sobel(tophat, cv.CV_32F, 1, 0, ksize=3)

gradX = np.absolute(gradX) # absolute: 计算绝对值min_Val, max_val = np.min(gradX), np.max(gradX)gradX = (255 * (gradX - min_Val) / (max_val - min_Val))gradX = gradX.astype(“uint8”)

# 通过闭操作(先膨胀,再腐蚀)将数字连在一起。 将本是4个数字的4个框膨胀成1个框,就腐蚀不掉了gradX = cv.morphologyEx(gradX, cv.MORPH_CLOSE, rectKernel)# cv_show(‘close1’, gradX)

# 二值化thresh = cv.threshold(gradX, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)[1]

# 闭操作,填补空洞thresh = cv.morphologyEx(thresh, cv.MORPH_CLOSE, sqKernel)# cv_show(‘close2’, thresh)

之后就可以查找轮廓了。

threshCnts = cv.findContours(thresh.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)[0]card_copy = card_image.copy()cv.drawContours(card_copy, threshCnts, -1, (0, 0, 255), 2)cv_show(‘Input_Contours’, card_copy)

4、模板匹配

将模板数字和待识别的图片都处理好后,就可以进行匹配了。

locs = [] # 存符合条件的轮廓for i, c in enumerate(threshCnts): # 计算矩形 x, y, w, h = cv.boundingRect(c)

ar = w / float(h) # 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组 if 2.5 《 ar 《 4.0: if (40 《 w 《 55) and (10 《 h 《 20): # 符合的留下来 locs.append((x, y, w, h))

# 将符合的轮廓从左到右排序locs = sorted(locs, key=lambda x: x[0])

接下来,遍历每一个大轮廓,每个大轮廓中有四个数字,对应四个小轮廓。将小轮廓与模板匹配。

output = [] # 存正确的数字for (i, (gx, gy, gw, gh)) in enumerate(locs): # 遍历每一组大轮廓(包含4个数字) groupOutput = []

# 根据坐标提取每一个组(4个值) group = gray[gy - 5:gy + gh + 5, gx - 5:gx + gw + 5] # 往外扩一点 # cv_show(‘group_’ + str(i), group) # 预处理 group = cv.threshold(group, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)[1] # 二值化的group # cv_show(‘group_’+str(i),group) # 计算每一组的轮廓 这样就分成4个小轮廓了 digitCnts = cv.findContours(group.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)[0] # 排序 digitCnts = myutils.sort_contours(digitCnts, method=“left-to-right”)[0]

# 计算并匹配每一组中的每一个数值 for c in digitCnts: # c表示每个小轮廓的终点坐标 z = 0 # 找到当前数值的轮廓,resize成合适的的大小 (x, y, w, h) = cv.boundingRect(c) # 外接矩形 roi = group[y:y + h, x:x + w] # 在原图中取出小轮廓覆盖区域,即数字 roi = cv.resize(roi, (57, 88)) # cv_show(“roi_”+str(z),roi)

# 计算匹配得分: 0得分多少,1得分多少。.. scores = [] # 单次循环中,scores存的是一个数值 匹配 10个模板数值的最大得分

# 在模板中计算每一个得分 # digits的digit正好是数值0,1,。..,9;digitROI是每个数值的特征表示 for (digit, digitROI) in digits.items(): # 进行模板匹配, res是结果矩阵 res = cv.matchTemplate(roi, digitROI, cv.TM_CCOEFF) # 此时roi是X digitROI是0 依次是1,2.。 匹配10次,看模板最高得分多少 Max_score = cv.minMaxLoc(res)[1] # 返回4个,取第二个最大值Maxscore scores.append(Max_score) # 10个最大值 # print(“scores:”,scores) # 得到最合适的数字 groupOutput.append(str(np.argmax(scores))) # 返回的是输入列表中最大值的位置 z = z + 1# 画出来 cv.rectangle(card_image, (gx - 5, gy - 5), (gx + gw + 5, gy + gh + 5), (0, 0, 255), 1) # 左上角,右下角# putText参数:图片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细 cv.putText(card_image, “”.join(groupOutput), (gx, gy - 15), cv.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)

最后将其打印出来,任务就完成了。

cv.imshow(“Output_image_”+str(i), card_image)cv.waitKey(0)

总结

信用卡识别的案例用到了图像处理的一些基本操作,对刚上手CV的人来说还是比较友好的。
编辑:lyn

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数字识别
    +关注

    关注

    2

    文章

    19

    浏览量

    10140
  • OpenCV
    +关注

    关注

    31

    文章

    635

    浏览量

    41343

原文标题:OpenCV萌新福音:易上手的数字识别实践案例

文章出处:【微信号:Huawei_Developer,微信公众号:华为开发者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【实战】人工智能0基础入门:基于Python+OpenCV的车牌识别项目(课程+平台实践

    01引言随着智能交通系统的发展,车牌识别威廉希尔官方网站 在车辆管理、交通监控、停车收费等多个领域发挥着重要作用。接下来小编将带你深入了解车牌识别项目的全流程,从理论基础到实际应用,让你掌握如何构建一个高效、准确
    的头像 发表于 12-16 10:43 279次阅读
    【实战】人工智能0基础入门:基于Python+<b class='flag-5'>OpenCV</b>的车牌<b class='flag-5'>识别</b>项目(课程+平台<b class='flag-5'>实践</b>)

    如何用OpenCV进行手势识别--基于米尔全志T527开发板

    本文将介绍基于米尔电子MYD-LT527开发板(米尔基于全志T527开发板)的OpenCV手势识别方案测试。摘自优秀创作者-小火苗米尔基于全志T527开发板一、软件环境安装1.安装OpenCVsudoapt-getinstalllibopencv-devpython3-
    的头像 发表于 12-13 08:04 658次阅读
    如何用<b class='flag-5'>OpenCV</b>进行手势<b class='flag-5'>识别</b>--基于米尔全志T527开发板

    【AI实战项目】基于OpenCV的“颜色识别项目”完整操作过程

    适用于哪些场景,然后通过Python编写代码来实现这些算法,并应用于实际项目中,实现图像的检测、识别、分类、定位、测量等目标。华清远见【python+OpenCV
    的头像 发表于 12-09 16:42 310次阅读
    【AI实战项目】基于<b class='flag-5'>OpenCV</b>的“颜色<b class='flag-5'>识别</b>项目”完整操作过程

    如何用OpenCV的相机捕捉视频进行人脸检测--基于米尔NXP i.MX93开发板

    : breakvideo.release()cv2.destroyAllWindows() 保存后执行”python3 opencv_test.py OpenCV装好后,可以为后面的人脸检测提供可行性。 要实现人脸识别
    发表于 11-15 17:58

    OpenCV图像识别C++代码

    安装OpenCV库 首先,您需要在您的计算机上安装OpenCV库。您可以从OpenCV官网下载预编译的库或从源代码编译。安装完成后,确保将OpenCV的头文件和库文件添加到您的项目中。
    的头像 发表于 07-16 10:42 1989次阅读

    opencv图像识别有什么算法

    OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,提供了大量的图像处理和计算机视觉相关的算法。以下是一些常见的OpenCV
    的头像 发表于 07-16 10:40 1037次阅读

    opencv-python和opencv一样吗

    不一样。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,它提供了大量的图像和视频处理功能。OpenCV
    的头像 发表于 07-16 10:38 1179次阅读

    opencv的主要功能有哪些

    OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,提供了大量的计算机视觉算法和工具。以下是OpenCV的主要功能: 图像处理
    的头像 发表于 07-16 10:35 1536次阅读

    什么是机器视觉opencv?它有哪些优势?

    机器视觉(Machine Vision)是一种利用计算机和图像处理威廉希尔官方网站 来模拟人类视觉系统的功能,实现对图像的识别、分析和理解的威廉希尔官方网站 。OpenCV(Open Source Computer
    的头像 发表于 07-16 10:33 776次阅读

    基于OpenCV的人脸识别系统设计

    基于OpenCV的人脸识别系统是一个复杂但功能强大的系统,广泛应用于安全监控、人机交互、智能家居等多个领域。下面将详细介绍基于OpenCV的人脸识别系统的基本原理、实现步骤,并附上具体
    的头像 发表于 07-11 15:37 1.2w次阅读

    OpenCV携奥比中光3D相机亮相CVPR 2024

    6月17日-21日,奥比中光合作伙伴OpenCV携Orbbec 3D相机参展在美国西雅图举办的CVPR 2024(即IEEE国际计算机视觉与模式识别会议),让开发者亲身体验Orbbec 3D相机
    的头像 发表于 06-21 09:38 569次阅读

    I.MX6ULL-飞凌 ElfBoard ELF1板卡 - 如何在Ubuntu中编译OpenCV库(X86架构)

    Ubuntu环境下编译X86架构的OpenCV,这为快速迭代产品、优化算法提供了坚实的支撑。希望本篇指南能成为各位小伙伴在嵌入式威廉希尔官方网站 探索之旅上的得力助手。如果您在实践过程中遇到任何问题,欢迎留言交流。
    发表于 06-07 09:32

    嵌入式学习-飞凌ElfBoard ELF 1板卡 - 如何在Ubuntu中编译OpenCV

    Ubuntu环境下编译X86架构的OpenCV,这为快速迭代产品、优化算法提供了坚实的支撑。希望本篇指南能成为各位小伙伴在嵌入式威廉希尔官方网站 探索之旅上的得力助手。如果您在实践过程中遇到任何问题,欢迎留言交流。
    发表于 06-07 09:21

    使用OpenCV进行仪表指针刻度的识别与读取

    首先说一下模板匹配,它是OpenCV自带的一个算法,可以根据一个模板图到目标图上去寻找对应位置,如果模板找的比较好那么效果显著,这里说一下寻找模板的技巧,模板一定要标准、精准且特征明显。
    发表于 02-22 13:54 2012次阅读
    使用<b class='flag-5'>OpenCV</b>进行仪表指针刻度的<b class='flag-5'>识别</b>与读取

    ELF 1威廉希尔官方网站 贴|如何移植OpenCV

    OpenCV拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux、Windows、Mac等操作系统上流畅运行,并能够快速实现一系列图像处理和识别
    的头像 发表于 01-09 13:55 388次阅读
    ELF 1威廉希尔官方网站
贴|如何移植<b class='flag-5'>OpenCV</b>