0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用深度学习框架分析数据,AI仿真超大规模临床试验

hl5C_deeptechch 来源:DeepTech深科技 作者:DeepTech深科技 2021-01-27 11:26 次阅读

和开发研制新药一样,发现老药的新用途也是医药科研人员和制药厂商的工作之一。目前,老药新用的发现途径多为偶然发现或临床试验的方式。但近期,俄亥俄州立大学研究人员开发了一种深度学习的框架,通过定制深度学习框架的方式对大量患者的“真实世界数据(real-world data,RWD)”进行回顾性分析,再结合因果推理来interwetten与威廉的赔率体系 药物的临床试验,为老药新用提供了新的途径。

1月4日,该研究以《一个通过在真实世界患者数据上模拟临床试验找到药物新用途的深度学习框架》(A deep learning framework for drug repurposing via emulatingclinical trials on real-world patient data)为题发表在《自然机器智能》上。

尽管该项研究是以预防冠心病患者出现心脏衰竭和中风为出发点而提议的老药新用,但张平对 DeepTech 表示,该框架具有高度的灵活性,可以同理应用于大多数疾病研究中。“该框架理论上是可以用于寻找可能的新冠肺炎药物的,但这项研究进行的时候还处于新冠爆发初期,数据不足以支撑”。

用深度学习框架分析数据,模拟药物的临床试验

目前获得药物新用途通常需要进行偶然性药物测试,但这种随机性的临床试验不仅十分耗时,而且成本昂贵。据 MedicineNet 信息显示,在美国,一款药物从实验室研究到市场应用,需要经过多重复杂严谨的试验,平均来说,这个过程长达 12 年之久。

其过程中,随机临床试验是确定药物对疾病有效性的黄金标准。相比其他老药新用的研究方法,全新的深度学习方法可以理解为用监测患者用药以及用药后病情发展、身体各项数据变化的方式来模拟药物的临床试验这一环节。张平表示,基于 RWD 的深度学习框架能够有效克服数据中各种各样的干扰变量,建立老药和新的适用症之间的联系。

具体而言,他们是按照临床试验的思路开发了一套高通量的计算框架来筛选既有药物尚未发现的适用症,达到将临床试验这一发现老药新用的过程“搬到”线上。

以模拟临床上对药物是否对症以及效果的试验。在近日发表的这篇论文中,以冠状动脉疾病(coronaryartery disease,CAD)为例,张平及其合作者从大量的保险数据中提取患者的病情发展及用药成分清单,同时对每种药物对应的服用者和非服用者进行监控,观察服用不同药物患者的用药以及病情发展情况。

b3df94b8-5fdc-11eb-8b86-12bb97331649.jpg

图|发现既有药物新用途的计算框架

以近期发表的研究论文为例,张平及其合作者将在已有但未表明可治疗为冠状动脉疾病(coronaryartery disease,CAD)的药物中寻找对 CAD 有效的药为目标,采用上述框架进行了超大规模的计算和分析。

已知 CAD 在临床上可能导致心衰、中风等,如患者服用了目前未标明 CAD 这一适用症的药物出现了病情好转,既可初步认为这款“老药”其具有“新用(治疗 CAD )”的可能。

首先,为尽可能保证输出结果的可信度,他们从 2012-2017 年间的 MarketScan 商业理赔的患者数据中获取了约 1.07 亿位患者的身体健康数据作为此次计算分析的整体。数据包括门诊用药、住院治疗和门诊服务等方面,涵盖了患者看诊/复诊时间、用药清单及剂量等。为实现其发现治疗 CAD 新药的目标,张平等人从中筛选出了 117.9 万左右 CAD 患者展开进一步“监控”。他们从这些样本数据中提取 CAD 患者用药清单的记录,对每种候选药物按照临床试验的分析方法而分为:实验组——也就是那些吃了该候选药物的 CAD 病人,对照组——身体基础情况类似但没有吃该候选药物(而是吃了一些随机的其他药物)的病人。

b4777198-5fdc-11eb-8b86-12bb97331649.jpg

图 | 模拟临床试验中实验组和对照组

此次研究中,他们选取了 CAD 患者服用的 55 种非治疗 CAD 的药物作为“老药新用”候选药物进行分析。筛选出参与“临床试验”的 CAD 患者后,将患者服用的 55 种药物作为候选药物输入上述计算框架中。接下来开启对服用候选药物的患者和与对照组患者进行病情发展情况的监测,包括所观察患者的初始疾病状况、是否服药、服用了哪些药以及何时开始治疗等数据,用数据来对现实生活中药物的临床试验进行模拟。

经过张平等人设计的深度学习框架计算,未出现心衰、中风或症状较轻的患者所服用的药物将作为结果输出,既为老药新用的“种子选手”。

文中结果显示,张平及其合作者观察到 55 种候选药物中有 9 种药物对患者的疾病产生了有益的作用。值得注意的是,在目前已知的4种用于治疗的 CAD 药物中,他们筛选出的 9 种药物中含有 3 种。

b4d40796-5fdc-11eb-8b86-12bb97331649.jpg

图|候选药物对CAD效果显示

为验证另外 6 种目前尚未指定用于治疗 CAD 的候选药物对 CAD 是否有效,张平及其合作者展开了进一步分析。他们用使用者和非使用者观察结果的加权平均数ATE(average treatment effect)来衡量候选药物对 CAD 效用。根据定义,ATE小于 0 的药物被视为对相应病症有改善效果,即未表现出心衰或中风症状或症状表现轻于未服用药物的患者;大于 0 则为病情恶化。从上图可见,ATE 小于 0 的有 9 个,其中此前未用于治疗该病症的药物标为蓝色,已知药物为红色。这表明了张平小组所设计框架思路的可行性。

除此以外,他们还通过分析惊喜地得出,现在正用于治疗糖尿病的药物二甲双胍和治疗抑郁症、焦虑症的药物依地普仑也表现出能够降低 CAD 患者心衰和中风的风险。目前,研究人员正在进一步测试这两种药物对 CAD 的疗效。

发现老药新用结果可靠,但也存在弊端

深度学习框架方法的可用性在以上研究中得到了印证,相比于传统的老药新用途发现方式存在偶然性以及前期测试成本高等不足,这种全新的途径有着自身的优势,但也并非没有缺陷。

尽管,相比于传统的在细胞或动物体的前期测试方式,基于 RWD 的深度学习研究获得的结果是直接从人体环境下完成的,省去了药物适应性的验证过程;深度学习框架下通过嵌入模块、递归神经网络和预测模块方式对所有影响药效的参数进行分析。

不过,张平也表示,深度学习方法虽然看起来完美,但在现实执行起来也存在一些不可避免的问题。因为现实很有可能并不如数据显示的那样,“比如病人可能会不按照剂量去吃药,甚至拿了药回去根本就没有吃等情况都是有可能的,这是从数据上无法看出来的。”在这一点上,深度学习方式无法和现实临床试验相比,真正的临床试验中精准控制患者的服药时间和剂量,至少在这方面临床上的严格服药把控能够更完全地体现药效。

但这种深度学习框架的方式也为老药新用的发现提供了新的途径,张平说,“我们是第一个开发深度学习的方法在 RWD 上做老药新用研究的团队”。

AI仿真临床试验,由计算机学生和药厂的碰撞产生

本篇研究论文的通讯作者张平,其本硕博所修专业均为计算机方向,机器学习是他的主修课程,数据挖掘为他的研究方向。谈及对老药新用的接触,其实是有些巧合的。

张平接触老药新用是在其读博期间。结束了华中科技大学的本、硕学习后,张平在天普大学开启了他的博士生涯。期间,机缘之下他去到一家制药公司葛兰素史克(GSK)实习。也是在 GSK ,在用机器学习的方法解决问题时,张平接触到了老药新用,他回忆道,“那大概是 10 年前了,那时候深度学习还没有开始流行”。而接触 RWD 则是其在 IBM T.J. 沃森研究中心了,张平在那期间的多个 AI 研究后来也被应用于药物发现和患者安全的项目里。

但真正开启 RWD 和深度学习在老药新用方面的研究是在他到俄亥俄州立大学之后。“实际上,俄亥俄州立大学同时拥有优秀的医学院和工程学院,这里丰富的数据资源是我以完全不同的视角重新做老药新用研究的机缘。”

2019 年初,张平加入俄亥俄州立大学在生物医学信息学系和计算机科学与工程系双聘助理教授。他领导的医学人工智能实验室——AIMed,其实验室的名字也有特殊的含义,“aimed翻译为中文可以是致力、目标的意思,我们组致力于 AI 算法的同时目标是解决医学(medicine)上的各种疑难问题,这里也取其一语双关的意思。”目前,AIMed 实验室主要进行三大方向的研究:一是本文中提到的用以辅助医药研发人员、制药厂老药新用的筛选;二是帮助医生做基于 AI 的医疗诊断;三是用 AI 去辅助放射科医生对医疗影像进行解读。

谈及此次研究论文的一作刘若琦,张平对 DeepTech 说,“她完成这个研究的时候才博士一年级,这是个非常不错的成果。”另外他也提到其实“这些学生挺辛苦的,刚入学不久就赶上疫情。我们也不能回学校,沟通都是在线上。”刘若琦本科就读于武汉大学,现在已经是俄亥俄州立大学计算机科学与工程系博士二年级的学生,据其个人介绍显示,她的研究兴趣集中在数据挖掘、因果推论及其在医疗保健中的应用上。

另外,在本次研究中至关重要的数据统计以及结果分析,由俄亥俄州立大学生物医学信息学系研究助理教授魏莱参与完成。魏莱老师同时也是该校生物统计学中心临床试验主管,负责对多个度量值进行建模,并设计小组顺序试验和自适应试验。其重点研究适应性临床试验设计和样本大小重新估计实验。

对于深度学习方法在老药新用方面的探索,张平表示,“虽然此次发布的文章中只提到了对 CAD 药物的筛选,但这一框架是普适的,能用于对任何一种病症的药物筛选,只要输入相应的症状即可。”

他说接下来将把该框架应用于对更多真实世界数据的老药新用以及寻找治疗目前临床需要的药物和对罕见病症、疑难杂症的治疗药物,他希望能够用AI的方法真正帮助攻克医疗难题,为医学研究做贡献,“而不仅仅只是停留在研究层面”。

原文标题:用数据说话!AI仿真超大规模临床试验,直接用患者健康数据检测药效,发现老药新用途

文章出处:【微信公众号:DeepTech深科技】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    31054

    浏览量

    269407
  • 人工智能
    +关注

    关注

    1792

    文章

    47387

    浏览量

    238900
  • 深度学习
    +关注

    关注

    73

    文章

    5506

    浏览量

    121265

原文标题:用数据说话!AI仿真超大规模临床试验,直接用患者健康数据检测药效,发现老药新用途

文章出处:【微信号:deeptechchina,微信公众号:deeptechchina】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    重大突破!优刻得×脑虎科技脑机接口临床试验取得新进展

    华山医院先后开展了高精度实时运动解码和语言解码临床试验研究,并取得重大威廉希尔官方网站 突破,使得“脑控”智能设备和“意念对话”成为现实。高通量植入式柔性脑机接口临床试验取得重大突破
    的头像 发表于 01-03 16:57 457次阅读
    重大突破!优刻得×脑虎科技脑机接口<b class='flag-5'>临床试验</b>取得新进展

    Neuralink获准在加拿大进行临床试验

    近日,马斯克旗下的脑机接口公司Neuralink宣布了一个重要进展:已正式获得加拿大卫生部的批准,将在该国启动首次临床试验。目前,Neuralink已开始面向公众招募受试者,为这一创新性的医疗研究
    的头像 发表于 11-25 10:35 202次阅读

    Neuralink获加拿大批准启动临床试验

    近日,马斯克旗下的脑机接口公司Neuralink宣布了一项重大进展。该公司已获得加拿大卫生部的正式批准,将在加拿大启动其首次临床试验,并已开始招募受试者。 此次在加拿大进行的临床试验名为
    的头像 发表于 11-22 10:55 221次阅读

    Zettabyte与纬创携手打造台湾首个超大规模AI数据中心

    在推动亚太地区AI计算领域迈向新纪元的征程中,Zettabyte与纬创资通(Wistron Corporation)携手宣布了一项重大合作——共同建设台湾地区首个超大规模AI数据中心,
    的头像 发表于 09-05 16:26 414次阅读

    谷歌正在考虑在越南建设超大规模数据中心

    据可靠消息透露,Alphabet集团旗下的谷歌公司正积极筹划在越南南部的经济枢纽胡志明市周边建设一座“超大规模数据中心。此举标志着美国科技巨头首次在东南亚国家进行此类重大投资,尽管具体的投资金额尚待揭晓。
    的头像 发表于 08-30 14:55 641次阅读

    超大规模集成电路(VLSI)中不可或缺的5种二极管

    在快速发展的超大规模集成电路(VLSI)设计世界中,选择正确的组件对于优化性能和效率至关重要。二极管在超大规模集成电路的各种应用中起着不可或缺的作用,从整流到电压调节。本文深入研究了2024年
    的头像 发表于 08-20 18:28 907次阅读
    <b class='flag-5'>超大规模</b>集成电路(VLSI)中不可或缺的5种二极管

    NVIDIA推出全新深度学习框架fVDB

    在 SIGGRAPH 上推出的全新深度学习框架可用于打造自动驾驶汽车、气候科学和智慧城市的 AI 就绪型虚拟表示。
    的头像 发表于 08-01 14:31 631次阅读

    SAS 24G+规范发布,为超大规模数据中心HDD和SSD

    在当前超大规模数据中心的演进历程中,尽管固态硬盘正日益向支持NVMe协议的PCIe接口转型,但串行连接SCSI(SAS)威廉希尔官方网站 依然是众多关键应用不可或缺的支柱。SAS存储威廉希尔官方网站 的生命力远未枯竭,这一点从
    的头像 发表于 07-25 15:13 800次阅读

    燧原科技与清程极智携手共创AI未来:共筑超大规模智算集群新篇章

    协议,双方将携手步入全新的合作阶段,共同探索并开发面向超万亿参数大模型和超大规模集群的高性能系统软件方案,标志着双方在推动AI威廉希尔官方网站 边界、加速产业智能化进程上迈出了坚实的一步。
    的头像 发表于 07-05 14:50 817次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的过程中,深度
    的头像 发表于 07-02 14:04 986次阅读

    如何监测临床试验中的药品运输和储存?

    从包装到患者,让临床试验和现场监测变得简单在临床试验中,确保患者安全和产品质量至关重要。然而,许多试验试剂盒和产品对温度敏感,容易受到存储和运输条件的影响。药物和生物样本的稳定性依赖
    的头像 发表于 06-07 08:08 833次阅读
    如何监测<b class='flag-5'>临床试验</b>中的药品运输和储存?

    超大规模数据中心采用三星FDP SSD降低存储成本

    主机数据放置威廉希尔官方网站 一直是超大规模数据中心关注的话题,因为它影响所部署的SSD的总体拥有成本(TCO)。
    的头像 发表于 03-07 15:39 2013次阅读
    <b class='flag-5'>超大规模数据</b>中心采用三星FDP SSD降低存储成本

    晶晟微纳发布N800超大规模AI算力芯片测试探针卡

    近日,上海韬盛科技旗下的苏州晶晟微纳宣布推出其最新研发的N800超大规模AI算力芯片测试探针卡。这款高性能探针卡采用了前沿的嵌入式合金纳米堆叠威廉希尔官方网站 ,旨在满足当前超大规模AI算力芯片的高
    的头像 发表于 03-04 13:59 1059次阅读

    中国电信规划在上海建设首个国产超大规模算力液冷集群

    中国电信规划建设首个国产超大规模算力液冷集群 人工智能威廉希尔官方网站 的快速发展催生了巨大的算力需求;中国电信规划在上海规划建设可支持万亿参数大模型训练的智算集群中心。其中会搭载液冷威廉希尔官方网站 ,单池新建国产算力达10000卡,也是首个支持单池万卡的国产超大规模算力液冷集群。
    的头像 发表于 02-22 18:48 1342次阅读

    临床试验数字化趋势下,Veeva助君实生物加速临床运营数字化转型

    eTMF临床试验电子文件管理系统和Veeva Vault CTMS临床试验项目管理系统。该举措标志着君实生物在临床开发领域正式步入数字化转型征程。 作为一家立足中国、布局全球的生物制药公司,君实生物的国际化
    的头像 发表于 02-22 17:00 421次阅读
    <b class='flag-5'>临床试验</b>数字化趋势下,Veeva助君实生物加速<b class='flag-5'>临床</b>运营数字化转型