0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自然语言任务方案思考:句子相似度和匹配

深度学习自然语言处理 来源:深度学习自然语言处理 作者:CS的陋室 2021-01-13 09:33 次阅读

0 小系列初衷

自己接触的项目大都是初创,没开始多久的项目,从0到1的不少,2020年快结束,感觉这个具有一定个人特色的威廉希尔官方网站 经验可以在和大家分享一下。

计划篇章:

(已完成)文本分类篇。针对NLP文本分类任务。

(已完成)序列标注(NER)篇。针对命名实体识别、序列标注任务。

文本匹配篇。针对语义相似度计算、向量匹配等问题。

人工特征学习篇。针对多特征的机器、深度学习方案。

开始我把这个标题叫做语义匹配,后来感觉还是不能叫这个名字,应该把问题放大为句子相似度和匹配问题。

1 语义匹配的场景

语义匹配的核心其实是评价两个query之间的相似度,可以看看现在常用的场景:

搜索领域,语义向量召回是一个比较新潮的召回方式,灵活性更高,下游的精排部分也可以通过语义相似度来进行排序。

智能客服,之前的阿里小蜜的文章也提过,对于长尾的结果,可以通过向量召回的方式来进行处理。

对话领域,可以说是智能客服的眼神,闲聊类的,可以通过语义匹配完成闲聊的回复,当然多轮也有多轮的玩法。

可以看到,各种领域,其实语义匹配的舞台非常大,了解这方面的方案对NLP威廉希尔官方网站 栈的了解非常有用。

2 方法选型

2.1 文本层面的相似

最简单的方法往往就是最浅层的方案,所以还是文本层面的相似,方法逐步升级是这样的:

编辑距离,这应该是最严格的一种相似了。

cqr,分子是句子1和句子2词汇的交集词汇量,分母是句子1和句子2的并集词汇量。

加权的cqr,可以做一个简单的词权重,然后做加权的cqr。

BM25。传统搜索的常用方法。

文本层面的方法,在搜索领域已经非常成熟,BM25已经具有很高的准度,结合上游常用的一些改写,其实已经能够达到很好的效果,这也是经典搜索最常用的一套范式。

2.2 向量表征作召回

向量召回是当前比较流行的一种新的搜索威廉希尔官方网站 ,这里以来两个关键威廉希尔官方网站 点,向量索引和句子表征威廉希尔官方网站 。

向量索引的是指就是一种向量最近邻的搜索方案,最常用的场景就是KNN,而在我们的场景中,就是把句子表征成一个向量,构建索引,新来一个句子,用同样的放哪个还是构建一个向量,就可以完成相似度召回,常用的构建索引方式推荐两种,这两种都已经有开源工具支持。

annoy,一种基于树的构造方法。

hnsw,一种基于图的构造方法,这应该是目前我已知速度最快的方法了。

说完了向量索引,就要说向量表征了,只有足够好的向量表征,上面说的向量召回,召回的东西才会足够好,为什么我说好呢,就是因为这里涉及的好的维度多:

准确率足够高,召回的内容真的是和句子足够接近。

有比较强的泛化能力,这也是语义向量召回相比传统搜索的相似召回最突出的优势,只要语义足够接近,“查询”和“查看”就可能匹配到,“幂幂”和“杨幂”也能打中,这样能降低我们挖掘数据带来的成本。

好的相似度匹配能识别关键词,只需要模型端到端处理,不需要单独抽关键词。

那么,这个语义表征,一般都是什么方法呢,这里也是提几个:

word2vector预训练。如果语料不足甚至没有语料,我们其实可以用开源的预训练好的w2v词向量作为基线,取均值就能拿到句向量。

如果有一些平行样本,可以开始考虑用一些平行预料(sentence1,setence2,label)进行finetuning,说白了就是两个向量分别去词向量后均值,最终用余弦或者欧氏距离计算相似度就行。

数据量足够后,就可以开始在上面搭积木了,CNN、LSTM之类的都可以尝试,当然经验之谈,self-attention可以尝试。

数据量再多点,我们就可以上bert之类的大家伙了。

现在的语义相似度,更多是通过优化交互特征来提升相似度计算的效果,但是在向量召回这里,由于目前只能支持简单的相似度召回,两个query只有在计算相似度的最后一步才能够见面,因此query之间的交互特征是无法提取的,所以很多现在流行的方法是用不了的。

2.3 语义相似度

如果语义相似度要被用在后续的精排,无论是搜索、对话甚至是推荐,在经历初筛之后,我们往往有更多时间和经历来比对剩余的结果和用户query之间的相似程度,此时我们就可以使用交互特征逐一匹配,完成最后的精排,这些方案往往在大量比赛中就有提到,以DSSM为基,升级很多方案,包括很多人知道的EISM等,当然比赛的经验也告诉我们,模型本身还可以加入更多的文本特征来协助衡量语义相似度,因此在用语义相似度模型的同时,可以加入一些人工特征来协助优化,这也是推荐系统的wide&deep中所提到的深浅层特征均用的思想。

这里给一篇蚂蚁金服比赛的文章吧,大家可以根据这个思路去参考优化:https://blog.csdn.net/u014732537/article/details/81038260

3 优化手段

当然,上面的方式是让大家用最快的速度去完成一个demo或者说baseline,然后我们需要一系列的手段进行优化,在这里也给大家介绍一些有用的方案。

如果你的场景里需要一些英文,可以加入一些英文文本去finetuning,开放域的。

针对问答场景,由于用户的问题都有明显意图,因此做一些词权重、attention的操作有利于效果提升,包括提槽,当然在浅层模型的情况下,词的归一化也有好处。

通过传统的搜索,用ES召回之类而方式,可以召回很多文本接近但是语义遥远的case,通过人工标注的样本对效果的提升很有好处。

同样是hard case挖掘,用自己的语义模型做召回,召回在阈值附近的case,做一下人工的复核,这样做样本也对效果提升有好处,这其实用的是主动学习的思想。

4 小结

做完搜索,后来又开始做向量表征和召回,感觉就很奇妙,能够理解传统搜索和相对新潮的向量表征召回之间的关系,这两者之间的关系还是挺微妙地,互相借鉴的过程中能够产生一些火花,例如向量检索之前可以召回一些相似的、标准的query然后来检索,这样能大幅提升准确率,也一定程度降低了对模型深度的要求。(隐约感觉是时候写一篇有关模型和规则特征之间关系的文章了?)

责任编辑:xj

原文标题:任务方案思考:句子相似度和匹配

文章出处:【微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 语义
    +关注

    关注

    0

    文章

    21

    浏览量

    8659
  • 自然语言处理

    关注

    1

    文章

    618

    浏览量

    13556

原文标题:任务方案思考:句子相似度和匹配

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    自然语言处理与机器学习的关系 自然语言处理的基本概念及步骤

    自然语言处理(Natural Language Processing,简称NLP)是人工智能和语言学领域的一个分支,它致力于研究如何让计算机能够理解、解释和生成人类语言。机器学习(Machine
    的头像 发表于 12-05 15:21 468次阅读

    ASR与自然语言处理的结合

    ASR(Automatic Speech Recognition,自动语音识别)与自然语言处理(NLP)是人工智能领域的两个重要分支,它们在许多应用中紧密结合,共同构成了自然语言理解和生成的威廉希尔官方网站 体系
    的头像 发表于 11-18 15:19 409次阅读

    自然语言处理与机器学习的区别

    在人工智能的快速发展中,自然语言处理(NLP)和机器学习(ML)成为了两个核心的研究领域。它们都致力于解决复杂的问题,但侧重点和应用场景有所不同。 1. 自然语言处理(NLP) 定义: 自然语言处理
    的头像 发表于 11-11 10:35 573次阅读

    使用LLM进行自然语言处理的优缺点

    语言任务,如文本分类、情感分析、机器翻译等。以下是使用LLM进行NLP的一些优缺点: 优点 强大的语言理解能力 : LLM通过训练学习了大量的语言模式和结构,能够理解和生成
    的头像 发表于 11-08 09:27 437次阅读

    nlp自然语言处理基本概念及关键威廉希尔官方网站

    、问答系统、文本摘要等众多领域有着广泛的应用。 1. NLP的基本概念 1.1 语言模型 语言模型是NLP的基础,它用于描述一个句子自然语言中出现的概率。
    的头像 发表于 07-09 10:32 593次阅读

    nlp自然语言处理的主要任务及威廉希尔官方网站 方法

    自然语言处理(Natural Language Processing,简称NLP)是人工智能和语言学领域的一个分支,它研究如何让计算机能够理解、生成和处理人类语言。NLP威廉希尔官方网站 在许多领域都有广泛
    的头像 发表于 07-09 10:26 1117次阅读

    自然语言处理威廉希尔官方网站 有哪些

    自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个分支,它致力于使计算机能够理解、解释和生成人类语言自然语言处理威廉希尔官方网站 的发展已经取得了显著的进展
    的头像 发表于 07-03 14:30 1125次阅读

    自然语言处理模式的优点

    自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,它致力于使计算机能够理解、生成和处理人类语言。随着威廉希尔官方网站 的发展,自然语言处理在各个领域
    的头像 发表于 07-03 14:24 784次阅读

    自然语言处理是什么威廉希尔官方网站 的一种应用

    自然语言处理(Natural Language Processing,简称NLP)是人工智能和语言学领域的一个分支,它涉及到使用计算机威廉希尔官方网站 来处理、分析和生成自然语言文本。自然语言处理技
    的头像 发表于 07-03 14:18 862次阅读

    自然语言处理包括哪些内容

    自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,它涉及到计算机与人类语言之间的交互。NLP的目标是让计算机能够理解、生成和处理人类语言
    的头像 发表于 07-03 14:15 857次阅读

    自然语言列举法描述法各自的特点

    自然语言文本。在自然语言处理中,列举法和描述法是两种常见的方法。 列举法 列举法是一种基于规则的方法,它通过列举所有可能的情况来解决问题。在自然语言处理中,列举法通常用于词性标注、命名实体识别、句法分析等
    的头像 发表于 07-03 14:13 1057次阅读

    什么是自然语言处理 (NLP)

    自然语言处理(Natural Language Processing, NLP)是人工智能领域中的一个重要分支,它专注于构建能够理解和生成人类语言的计算机系统。NLP的目标是使计算机能够像人类一样
    的头像 发表于 07-02 18:16 1177次阅读

    自然语言处理威廉希尔官方网站 的原理的应用

    自然语言处理(Natural Language Processing, NLP)作为人工智能(AI)领域的一个重要分支,旨在使计算机能够理解和处理人类自然语言。随着互联网的普及和大数据威廉希尔官方网站 的发展
    的头像 发表于 07-02 12:50 523次阅读

    神经网络在自然语言处理中的应用

    自然语言处理(NLP)是人工智能领域中的一个重要分支,它研究的是如何使计算机能够理解和生成人类自然语言。随着人工智能威廉希尔官方网站 的飞速发展,神经网络在自然语言处理中的应用逐渐展现出其强大的潜力和优势。本文
    的头像 发表于 07-01 14:09 508次阅读

    一种基于自然语言的轨迹修正方法

    本研究提出了ExTraCT框架,利用自然语言进行轨迹校正。该框架结合了大型语言模型(LLMs)用于自然语言理解和轨迹变形函数。ExTraCT能够根据场景在线生成轨迹修改特征及其自然语言
    的头像 发表于 01-19 10:45 449次阅读
    一种基于<b class='flag-5'>自然语言</b>的轨迹修正方法