本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。
Part1:PyTorch简单知识
Part2:PyTorch的自动梯度计算
Part3:使用PyTorch构建一个神经网络
Part4:训练一个神经网络分类器
Part5:数据并行化
本文是关于Part1的内容。
Part1:PyTorch简单知识
PyTorch是一个基于Python的科学计算框架,用于进行深度学习相关研究。对于Python语言的入门,可以参考之前的两篇介绍Python&Numpy的博客。分别是Python& Numpy 教程(上) 和Python & Numpy 教程(下)。这里我们就直接介绍PyTorch中的基本操作。
1 Tensors
Tensors与numpy中的ndarray类似,但是Tensors支持GPU运算。首先来做一些简单的例子。
导入基本的package:
构建一个5*3的未初始化的矩阵:
x = torch.Tensor(5, 3) print(x)
构建一个随机初始化矩阵:
x = torch.rand(5, 3) print(x)
获取矩阵的size:
print(x.size())
注意,torch.Size实际上是一个tuple,所以它支持相同的运算。
2 运算(Operations)
运算可以使用多种语法表示,我们以加法为例子来说明。
加法:语法1
y = torch.rand(5, 3) print(x + y)
加法:语法2
print(torch.add(x, y))
加法:给定输出的tensor
result = torch.Tensor(5, 3) torch.add(x, y, out=result) print(result)
加法:原地进行(in-place)的加法
# adds x to y y.add_(x) print(y)
注意,任何原地改变tensor的运算后边会后缀一个“_”,例如:x.copy_(y),x.t_(),会改变x的值。
你可以使用标准的numpy方式的索引。
print(x[:, 1])
3 NumpyBridge
将torch的Tensor转换为numpy的array,反之亦然。
torch的Tensor和numpy的array分享底层的内存地址,所以改变其中一个就会改变另一个。
将torch Tensor转换为numpy array
a = torch.ones(5) print(a)
b = a.numpy() print(b)
观察numpy array的值怎样改变。
a.add_(1) print(a) print(b)
将numpy array 转换为torch Tensor
看一下改变numpy array的值是怎样同时改变torch Tensor的。
import numpy as np a = np.ones(5) b = torch.from_numpy(a) np.add(a, 1, out=a) print(a) print(b)
CPU上的所有Tensors(除了CharTensor)支持到Numpy的双向转换。
4 CUDA Tensors
通过使用 .cuda 函数,Tensors可以被移动到GPU。
# let us run this cell only if CUDA is available if torch.cuda.is_available(): x = x.cuda() y = y.cuda() x + y
责任编辑:xj
-
数据
+关注
关注
8文章
7006浏览量
88946 -
pytorch
+关注
关注
2文章
808浏览量
13201
发布评论请先 登录
相关推荐
评论