0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

未来天线威廉希尔官方网站 与5G移动通信的解析

电子设计 来源:电子设计 作者:电子设计 2020-12-26 03:00 次阅读

过去二十年,我们见证了移动通信从1G到4G LTE的转变。在这期间,通信的关键威廉希尔官方网站 在发生变化,处理的信息量成倍增长。而天线,是实现这一跨越式提升不可或缺的组件。

按照业界的定义,天线是一种变换器,它把传输线上传播的导行波变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换,也就是发射或接收电磁波。通俗点说,无论是基站还是移动终端,天线都是充当发射信号和接收信号的中间件。

现在,下一代通信威廉希尔官方网站 ——5G已经进入了标准制定阶段的尾声,各大运营商也正在积极地部署5G设备。毋庸置疑,5G将给用户带来全新的体验,它拥有比4G快十倍的传输速率,对天线系统提出了新的要求。在5G通信中,实现高速率的关键是毫米波以及波束成形威廉希尔官方网站 ,但传统的天线显然无法满足这一需求。

5G通信到底需要什么样的天线?这是工程开发人员需要思考的问题。为此雷锋网IoT科技评论邀请了新加坡国立大学终身教授、IEEE Fellow陈志宁为大家讲解5G移动通信中的未来天线威廉希尔官方网站 。

移动通信基站天线的演进及趋势

基站天线是伴随着网络通信发展起来的,工程人员根据网络需求来设计不同的天线。因此,在过去几代移动通信威廉希尔官方网站 中,天线威廉希尔官方网站 也一直在演进。

第一代移动通信几乎用的都是全向天线,当时的用户数量很少,传输的速率也较低,这时候还属于interwetten与威廉的赔率体系 系统。

到了第二代移动通信威廉希尔官方网站 ,我们才进入了蜂窝时代。这一阶段的天线逐渐演变成了定向天线,一般波瓣宽度包含60°和90°以及120°。以120°为例,它有三个扇区。

八十年代的天线还主要以单极化天线为主,而且已经开始引入了阵列概念。虽然全向天线也有阵列,但只是垂直方向的阵列,单极化天线就出现了平面和方向性的天线。从形式来看,现在的天线和第二代的天线非常相似。

1997年,双极化天线(±45°交叉双极化天线)开始走上历史舞台。这时候的天线性能相比上一代有了很大的提升,不管是3G还是4G,主要潮流都是双极化天线。

到了2.5G和3G时代,出现了很多多频段的天线。因为这时候的系统很复杂,例如GSM、CDMA等等需要共存,所以多频段天线是一个必然趋势。为了降低成本以及空间,多频段在这一阶段成为了主流。

到了2013年,我们首次引入了MIMO(多入多出威廉希尔官方网站 ,Multiple-Input Multiple-Output)天线系统。最初是4×4 MIMO天线。

MIMO威廉希尔官方网站 提升了通信容量,这时候的天线系统就进入了一个新的时代,也就是从最初的单个天线发展到了阵列天线和多天线。

但是,现在我们需要把目光投向远方,5G的部署工作已经启动了,天线威廉希尔官方网站 在5G会扮演一个什么样的角色,5G对天线设计会产生什么影响?这是我们需要探索的问题。

过去天线的设计通常很被动:系统设计完成后再提指标来定制天线。不过5G现在的概念仍然不明确,做天线设计的研发人员需要提前做好准备,为5G通信系统提供解决方案,甚至通过新的天线方案或者威廉希尔官方网站 来影响5G的标准定制以及发展。

从过去几年和移动通信公司的合作交流经验来看,未来基站天线有两大趋势。

第一是从无源天线到有源天线系统。

这就意味着天线可能会实现智能化、小型化(共设计)、定制化。

因为未来的网络会变得越来越细,我们需要根据周围的场景来进行定制化的设计,例如在城市区域内布站会更加精细,而不是简单的覆盖。5G通信将会应用高频段,障碍物会对通信产生很大的影响,定制化的天线可以提供更好的网络质量。

第二个趋势是天线设计的系统化和复杂化。

例如波束阵列(实现空分复用)、多波束以及多/高频段。这些都对天线提出了很高的要求,它会涉及到整个系统以及互相兼容的问题,在这种情况下天线威廉希尔官方网站 已经超越了元器件的概念,逐渐进入了系统的设计。

天线威廉希尔官方网站 的演进过程:最早从单个阵列的天线,到多阵列再到多单元,从无源到有源的系统,从简单的MIMO到大规模MIMO系统,从简单固定的波束到多波束。

设计层面的趋势

对于基站而言,天线设计的一大原则就是小型化。

不同系统的天线是设计在一起的,为了降低成本、节省空间就要做得足够小,所以就需要天线是多频段、宽频段、多波束、MIMO/Massive MIMO,MIMO对天线的隔离度。Massive MIMO对天线的混互耦都有一些特殊的要求。

另外,天线还需要可调谐。

第一代天线是靠机械来实现倾角,第三代实现了远程的电调,5G如果能实现自调谐,是非常有吸引力的。

对于移动终端而言,对天线的要求也是小型化、多频段、宽频段、可调谐。虽然这些特性现在也有,但5G的要求会更加苛刻。

除此之外,5G移动通信的天线还面临了一个新的问题——共存。

实现Massive MIMO,收发都需要多天线,也就是同频多天线(8天线、16天线)。这样的多天线系统给终端带来最大的挑战就是共存问题。

怎样降低相互之间的影响以耦合,如何增加信道的隔离度…这对5G终端天线提出了新的要求。

具体来说会涉及以下三点:

1.降低相互的影响,特别是不同功能模块,不同频段之间的互相干扰,之前学术界认为不会存在这种情况,但在工业界确实存在这个问题;

2.去耦,在MIMO系统里面,天线的互耦不仅仅会降低信道的隔离度,还会降低整个系统的辐射效率。另外,我们不能指望完全依赖于高频段毫米波来解决性能上的增长,例如25GHz、28GHz…60GHz都存在系统上的问题;

3.去相关性,这一点可以从天线和电路设计配合来解决,不过通过电路来解决方案带宽非常受限,很难满足所有频段的带宽。

5G系统的天线威廉希尔官方网站

这包括单个天线的设计以及系统层面上的威廉希尔官方网站 ,系统层面的上文有提到,例如多波束、波束成形、有源天线阵、Massive MIMO等。

从具体天线设计来看,超材料为基础的概念发展出来的威廉希尔官方网站 将会大有裨益。目前超材料已经在3G和4G上取得了成功,例如实现了小型化、低轮廓、高增益和款频段。

第二个是,衬底或者封装集成天线。这些天线主要用在频率比较高的频段,也就是毫米波频段。虽然高频段的天线尺寸很小,但天线本身的损耗非常大,所以在终端上最好把天线和衬底集成或者更小的封装集成。

第三个是电磁透镜。透镜主要应用于高频段,当波长非常小的时候,放上一个介质可以去到聚焦的作用,高频天线体积并不大,但是微波段的波长很长,这就导致透镜很难使用,体积会很大。

第四个是MEMS的应用。在频率很低的时候,MEMS可以用作开关,在手机终端,如果能对天线进行有效的控制、重构,就可以实现一个天线多用。

以电磁透镜为例,这一设计引进了一个概念:在多单元的天线阵列前面放了一个电磁透镜(这里指应用于微波或毫米波低端频段的透镜,与传统光学透镜不同),当光从某一个角度入射后,就会在某一个焦平面上产生斑点,这个斑点上就集中了大量的能力,这就意味着在很小的区域内把整个能力的主要部分接收下来。

当入射方向变化,斑点在焦平面上的位置也会发生变化。如上图,当角度正投射的时候,产生了黑颜色的能量分布,如果是按照某个角度θ入射(红颜色),主要能量就偏离了黑颜色区域。

用这个概念可以区分能量是从哪里来的,入射的方向和能量在阵列上或者焦平面上的位置是一一对应的。反之,在不同的位置激励天线,天线就会辐射不同的方向,这也是一一对应的。

如果用多个单元在焦平面上辐射,就可以产生多个载波束的辐射,也就是所谓的波束成形;如果在这些波束之间进行切换,就出现波束扫描的现象;如果这些天线同时用,就可以实现Massive MIMO。这个阵列可以很大,但在每个波束上只要用很少的阵列就可以实现高增益的辐射。

普通的阵列如果有同样大小的口径,每次收到的能量是要所有的单元必须在这个区域内接收能量,如果在很大区域只放一个单元收到的能量只是非常小的一部分;和普通阵列不同的是,同样的口径在没有任何损耗的情况下,只用很少的单元就可以接收到所有的能量,不同的角度进来,这些能量可以被不同的地方同时接收。

这大大简化了整个系统,如果每次工作只有一个方向的时候,只要一个局部的天线工作就可以,这就减少了同时工作天线的个数。而子阵的概念不同,它是让局部多天线构成子阵,这时候通道数是随着子阵单元数的增加而减少的。例如10×10的阵列,如果用5×5变成子阵的话,那么就变成了只有四个独立的通道,整个信道数也就减少了。

上图右侧显示的是在基带上算出来透镜对系统的影响,水平方向是天线个数,假设水平方向上一个线阵有20个单元,用透镜的情况下,只用5个单元去接受被聚焦后的能量比不用透镜全部20个单元都用上的效果要更好,前者的通信质量更高以及成本、功耗更低。即便是最糟糕的情况,波从所有方向入射,这20个单元都用上和后者的效果也是一样的。所以用透镜可以改善天线的性能——用少量天线个数,达到以往大型阵列的效果。

从这张PPT可以看出,用电磁透镜可以降低成本、降低复杂度、增加辐射效率,还可以增加天线阵列的滤波特性(屏蔽干扰信号)等等。

这张PPT展示的是用在28GHz毫米波频段上的天线,并且用了7个单元天线作为馈源。

如左侧所示,前面的透镜是用超材料制成的屏幕透镜,用两层PCB刻成不同的形状进行相位的调整,以实现特定方向的聚焦。右侧可以看出7个辐射单元性能,波瓣宽度是6.8°,旁瓣是18dB以下,增益是24-25dB。

这一实验验证了电磁透镜在基站上的应用,同时也验证了超材料威廉希尔官方网站 在天线小型化的作用。

毫米波的天线设计

众所周知,5G将会拥有低频段和毫米波两个频段,而毫米波的波长很短损耗很大,所以在5G通信里面,我们必须解决这一问题。

第一个方案是,衬底集成天线(substrate integrated antenna,即SIA)。

这种天线主要基于两个威廉希尔官方网站 :空波导传输的时候介质带来的损耗很小,所以可以用空波导来进行馈源传输。但这存在几个问题,因为是空气波导,尺寸非常大,而且无法和其它电路集成,所以比较适合高功率、大体积的应用场景;另一个是微带线威廉希尔官方网站 ,它可以大规模生产,但它本身作为传输介质的损耗很大,而且很难构成大规模天线阵列。

基于这两个威廉希尔官方网站 就可以产生衬底集成的波导威廉希尔官方网站 。这一威廉希尔官方网站 最早由日本工业界提出来,他们在1998年发表了第一篇关于介质集成的波导结构论文,提到了在很薄的介质衬底上实现波导,用小柱子挡住电磁波,避免沿着两边扩。这不难理解,当两个小柱子的间距小鱼四分之一波长的时候,能量就不会泄露出去,这就可以形成高效率、高增益、低轮廓、低成本、易集成、低损耗的天线。

上图右下方是利用这一威廉希尔官方网站 在LTCC上做出来的60GHz的天线,增益达到了25dB,尺寸8×8单元。

这一方案是适合于毫米波在基站上的应用,在移动终端上有另外一种方案。

第二个解决方案是把天线设计在封装(package integrated antenna,即PIA)。

因为天线在芯片上最大的问题就是损耗太大,而且芯片本身的尺寸很小,把天线设计进去会增加成本,所以在工程上几乎无法得到大规模应用。如果用封装(尺寸比芯片大)作为载体来设计天线,不仅能设计出单个天线,还能设计天线阵列,这就避免了硅上直接做天线在体积、损耗和成本上的限制。

另外有一点需要注意的问题是,能否用PCB板做天线?答案是肯定的。

关键的瓶颈并不是材料自身,而是材料带来的设计问题和加工上的问题。不过PCB只适合在60GHz以下的频段,在60GHz以后推荐用LTCC,但到200GHz后,LTCC也存在瓶颈。

总结

未来天线必须要和系统一起设计而不是单独设计,甚至可以说天线将会成为5G的一个瓶颈,如果不突破这一瓶颈,系统上的信号处理都无法实现,所以天线已经成为5G移动通信系统的关键威廉希尔官方网站 。天线不只是一个辐射器,它有滤波特性、放大作用、抑制干扰信号,它不需要能量来实现增益,因此天线不仅仅是一个器件。

精彩问答

Q:国内做得好的天线企业有哪些?5G产业链的配套是否已经准备好?

A:国内有很多领先的天线企业,全世界最好的基站天线厂商十有七八在中国,其它几家外资企业的工厂也在中国。5G现在有很多方案,我们不确定哪一个会最终被使用,但从目前来说,现有的器件基本都能满足要求。

Q:在未来的5G终端上,天线位置的设计需要遵循什么原则?

A:未来5G终端上到底有多少位置可以给我们部署天线是个问题。目前,天线的设计还是跟着系统走,系统设计好了,才会考虑到天线的位置。从威廉希尔官方网站 角度来讲,离设备头部越远越好,目前手机上一般都是双天线,主天线一般是在下半部,因为头对能量有吸收遮挡;另外,天线之间尽量共用,减少天线占用的空间;第三个是多天线系统,原则上是越远越好,但是面积有限,需要靠空间分集、极化分集,尽量减少天线之间的相关性。

Q:有一种说法是,5G天线就是阵列贴片,陈教授怎么看?

A:如果仅仅是阵列贴片,那整个5G的挑战就会大大减少,但这要看具体应用。5G通信最低的频段是3GHz,这和LTE相差无几,还是要用阵子天线。如果超过5GHz,可以用阵子或者贴片,但是到28GHz以后用贴片更适合,但也可以用透镜天线、波导缝隙天线,因为高频波导的传输的欧姆损耗是比较小的,所以从整个系统的效率来看,用波导天线也是有可能的。如果仅限于某种形式的天线,会限制天线发挥的空间。

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 天线
    +关注

    关注

    68

    文章

    3198

    浏览量

    140792
  • 无线
    +关注

    关注

    31

    文章

    5451

    浏览量

    173270
  • 移动终端
    +关注

    关注

    1

    文章

    212

    浏览量

    24825
  • 5G
    5G
    +关注

    关注

    1354

    文章

    48443

    浏览量

    564088
收藏 人收藏

    评论

    相关推荐

    6G通信威廉希尔官方网站 对比5G有哪些不同?

    6G,即第六代移动通信威廉希尔官方网站 ,是5G之后的延伸,代表了一种全新的通信
    的头像 发表于 11-22 18:49 370次阅读

    5G RedCap通信网关是什么

    5G RedCap通信网关:赋能未来通信的轻量化利器 在快速发展的物联网和工业互联网时代,企业对实时数据传输和高速通信的需求日益迫切。作为第
    的头像 发表于 08-30 13:47 401次阅读

    5G Advanced威廉希尔官方网站 新突破:高速率体验引领未来应用

    通信威廉希尔官方网站 的持续演进中,中国移动研究院携手中兴通讯与高通威廉希尔官方网站 公司,共同完成了一项具有里程碑意义的验证——5G Advanced高低频多载波聚
    的头像 发表于 07-24 17:59 1608次阅读

    2024世界移动通信大会聚焦5G未来通信威廉希尔官方网站 ,爱立信分享5G战略蓝图

    近日,在上海盛大开幕的2024世界移动通信大会上,5G及其演进威廉希尔官方网站 5G-A、前瞻性的6G
    的头像 发表于 07-05 15:09 750次阅读

    京信通信5G新产品新威廉希尔官方网站 亮相世界移动通信大会(MWC)

      京信通信5G新产品新威廉希尔官方网站 亮相 6月26-28日,由全球移动通信协会(GSMA)主办的世界移动
    的头像 发表于 06-29 18:03 1698次阅读
    京信<b class='flag-5'>通信</b>携<b class='flag-5'>5G</b>新产品新<b class='flag-5'>威廉希尔官方网站
</b>亮相世界<b class='flag-5'>移动</b><b class='flag-5'>通信</b>大会(MWC)

    移远通信闪耀MWC上海:5G前沿威廉希尔官方网站 引领未来

    在2024年的盛夏时节,世界移动通信大会(MWC上海)如期而至,为全球通信行业带来了一场科技与创新的盛宴。今年的展会以“未来先行”为主题,聚焦“超越
    的头像 发表于 06-28 16:01 651次阅读

    移远通信创新推出5G透明天线,引领物联网天线新革命

    物联网巨头移远通信近日宣布,其已成功研发出前沿威廉希尔官方网站 产品——5G透明天线,以行业领先的步伐推动物联网天线
    的头像 发表于 03-25 09:56 934次阅读

    美格智能联合罗德与施瓦茨完成5G RedCap模组SRM813Q验证,推动5G轻量化全面商用

    智能5G RedCap模组SRM813Q的射频和吞吐量性能,展现了美格智能在无线通信模组领域领先的威廉希尔官方网站 实力和创新能力。 罗德与施瓦茨是全球领先的测试与测量解决方案供应商,在测试与测量、信息
    发表于 02-27 11:31

    5G网络通信有哪些威廉希尔官方网站 痛点?光耦威廉希尔官方网站 5G网络通信的应用

    相对有限,特别是低频段的频谱资源。因此,如何高效利用频谱资源成为5G网络通信的一个重要威廉希尔官方网站 痛点。 2. 多天线威廉希尔官方网站 挑战:
    的头像 发表于 02-18 17:13 968次阅读

    5g通信中天线设计及电波传播特性

    和意义 随着移动通信威廉希尔官方网站 的不断发展和进步,5G威廉希尔官方网站 成为当前研究和关注的热点。5G
    的头像 发表于 01-09 16:37 1136次阅读

    5g天线波瓣宽度是多少

    5G天线的波瓣宽度是指天线主瓣的主轴宽度,它是该天线辐射功率在空间中的分布范围。在5G系统中,天线
    的头像 发表于 01-09 16:12 1254次阅读

    5G毫米波通信需要更多天线

    随着科技的不断进步和人们对网络通信需求的增加,第五代移动通信威廉希尔官方网站 5G)正逐渐发展为现实。5G
    的头像 发表于 01-09 15:58 666次阅读

    5G 外置天线

    5G外置天线 新品介绍 5G圆顶天线和Whip天线旨在提供617 MHz至6000 MHz的宽带无缝高速互联网接入连接解决方案。这些
    发表于 01-02 11:58

    5g毫米波天线有什么用

    天线基于毫米波威廉希尔官方网站 ,通过在高频段传输数据,实现高速、大容量的无线通信。相比传统的低频段,毫米波天线可以提供更大的带宽和更低的延迟,以满足日益增长的数据传输需求。 特点: (1)高速传输
    的头像 发表于 12-27 13:47 2058次阅读