来源:OpenCV学堂
作者:gloomyfish
前言
OpenCV DNN模块支持的图像语义分割网络FCN是基于VGG16作为基础网络,运行速度很慢,无法做到实时语义分割。2016年提出的ENet实时语义分割网络基于编码与解码的网络语义分割方式,类似UNet网络,通过构建自定义Block块,在Cityscapes, CamVid, SUN数据集上实现了性能与实时双提高。
ENet网络结构
作者从ResNet网络结构设计中收到启发,定义两个新的Block结构,如下:
其中a是初始Block,非重叠2x2最大池化,左侧卷积步长为2,然后13个filters之连接合并,该结构注意是收到了Inception改进模型的启发。B是ENet的bottleneck模块,其中卷积可能是正常卷积、空洞卷积、反卷积,使用3x3或者5x5的filters,最终合并在一起是按空间位置相加。两个1x1的卷积分别用来降低维度与扩展,使用BN/Dropout正则化,PReLU非线性激活。最终的ENet网络模型结构如下:
其中stage2跟stage3结构相同,stage4跟stage5属于解码部分。
设计考量
常见的深度学习语义分割模型在下采样操作上的两个缺点:一是降低Feature Map的分辨率会导致图像空间信息损失,特别是图像边缘信息,这个对语义分割精度有明显影响;二是像素级别的语义分割网络要求输入跟输出的分辨率保持一致,这个就要求强的下采样跟强的上采样必须对称,这个增加了模型的计算与参数量。其中第一个问题在FCN与SegNet网络中通过在编码阶段叠加Feature Map与在解码阶段通过稀疏上采样来抑制,但是强的下采样依然对整个语义分割精度有伤害,要在设计时候适当的加以限制。
但是下采样同样可以帮助获得较大的感受野,区分不同的类别,作者发现空洞卷积在这个方面特别有帮助,ENet为了获得实时性能,采用了早期下采样策略来降低计算SegNet跟UNet都是对称的网络结构,ENet采用大的编码网络,小的解码网络实现的不对称结构,编码网络实现分类任务,解码网络主要是优化细节,更好的输出结果。
此外作者在设计过程中还考虑了非线性激活、空洞卷积、正则化方式的影响。
OpenCV DNN使用ENet道路分割
OpenCV DNN模块从OpenCV4.0版本开始支持ENet网络模型加载与解析,其中的道路分割模型可以从下面的地址下载:
https://github.com/e-lab/ENet-training
在OpenCV DNN使用该模型时转换Blob输入相关参数信息如下:
mean: [0, 0, 0]
scale: 0.00392
width: 512
height: 256
rgb: true
classes: "enet-classes.txt"
其中分类文件enet-classes.txt可以从OpenCV的sample/data/dnn中发现。输出的数据格式为:Nx20xHxW,其中N=1表示每次输入的一张图像,20是基于Cityscapes数据集训练的20个类别标签,H跟W是输入时图像分辨率(512x256)。
最初版本代码实现
该代码实现是来自C++版本的翻译,完整的演示代码如下:
#loadCNNmodelbin_model="D:/projects/models/enet/model-best.net";net=cv.dnn.readNetFromTorch(bin_model)#readinputdataframe=cv.imread("D:/images/software.jpg");blob=cv.dnn.blobFromImage(frame,0.00392,(512,256),(0,0,0),True,False);cv.imshow("input",frame)#Runamodelnet.setInput(blob)score=net.forward()#Putefficiencyinformation.t,_=net.getPerfProfile()label='Inferencetime:%.2fms'%(t*1000.0/cv.getTickFrequency())print(score.shape)#generatecolortablecolor_lut=[]n,con,h,w=score.shapeforiinrange(con):b=np.random.randint(0,256)g=np.random.randint(0,256)r=np.random.randint(0,256)color_lut.append((b,g,r))maxCl=np.zeros((h,w),dtype=np.int32);maxVal=np.zeros((h,w),dtype=np.float32);#findmaxscorefor20channelsonpixel-wiseforiinrange(con):forrowinrange(h):forcolinrange(w):t=maxVal[row,col]s=score[0,i,row,col]ifs>t:maxVal[row,col]=smaxCl[row,col]=i#colorfulthesegmentationimagesegm=np.zeros((h,w,3),dtype=np.uint8)forrowinrange(h):forcolinrange(w):index=maxCl[row,col]segm[row,col]=color_lut[index]h,w=frame.shape[:2]segm=cv.resize(segm,(w,h),None,0,0,cv.INTER_NEAREST)print(segm.shape,frame.shape)frame=cv.addWeighted(frame,0.2,segm,0.8,0.0)cv.putText(frame,label,(0,15),cv.FONT_HERSHEY_SIMPLEX,0.5,(0,255,0))cv.imshow("ENet-Demo",frame)cv.imwrite("D:/result.png",frame)cv.waitKey(0)cv.destroyAllWindows()
总的来说比较啰嗦!
修改后代码熟实现
上面是我在2019年3月份时候在OpenCV研习社 的代码分享,当时主要是把C++代码直接翻译过来,并没有太多考虑,今天又重新看了一下感觉自己写了点垃圾代码,所以重新整理了一下,把输出解析的部分基于Numpy跟OpenCV-Python函数做了简化,最终得到的代码如下:
1#loadCNNmodel 2bin_model="D:/projects/models/enet/model-best.net"; 3net=cv.dnn.readNetFromTorch(bin_model) 4#readinputdata 5frame=cv.imread("D:/images/spacecity.png"); 6blob=cv.dnn.blobFromImage(frame,0.00392,(512,256),(0,0,0),True,False); 7cv.imshow("input",frame) 8h,w,c=frame.shape 910#Runamodel11net.setInput(blob)12score=net.forward()13#Putefficiencyinformation.14t,_=net.getPerfProfile()15label='Inferencetime:%.2fms'%(t*1000.0/cv.getTickFrequency())16score=np.squeeze(score)17score=score.transpose((1,2,0))18score=np.argmax(score,2)19mask=np.uint8(score)20mask=cv.cvtColor(mask,cv.COLOR_GRAY2BGR)21cv.normalize(mask,mask,0,255,cv.NORM_MINMAX)22cmask=cv.applyColorMap(mask,cv.COLORMAP_JET)23cmask=cv.resize(cmask,(w,h))24dst=cv.addWeighted(frame,0.7,cmask,0.3,0)25cv.putText(dst,label,(50,50),cv.FONT_HERSHEY_SIMPLEX,0.75,(0,0,255),2)26cv.imshow("dst",dst)27cv.waitKey(0)
总的执行时间也大大减少,主要去除了一些无谓的循环解析输出数据部分。CPU上10+FPS 应该没问题!实时get!
审核编辑 黄昊宇
-
cpu
+关注
关注
68文章
10873浏览量
212081 -
人工智能
+关注
关注
1792文章
47372浏览量
238857
发布评论请先 登录
相关推荐
评论