谷歌表示,借助 TensorFlow 2,可在跨平台、设备和硬件上实现一流的训练性能,从而使开发者、工程师和研究人员能够在他们喜欢的平台上工作。IT之家获悉,现在,TensorFlow 用户可以在搭载 Apple 全新 M1 芯片或 Intel 芯片 Mac 上的 利用 TensorFlow 2.4 Mac 优化版和新的 ML Compute 框架来加快训练速度。这些改进提升了 Apple 开发者通过 TensorFlow Lite 在 iOS 上执行 TensorFlow 的能力,继续展现了 TensorFlow 在 Apple 硬件上支持高性能 ML 执行方面的广度和深度。
采用 ML Compute 时 Mac 上的性能
Apple 近期发布了搭载全新 M1 芯片的系列 Mac 产品,如此一来,Apple 针对 Mac 优化的 TensorFlow 2.4 版能够充分利用 Mac 的强大功能并在性能上大幅提升。
ML Compute 是 Apple 的新框架,可以在 Mac 上训练 TensorFlow 模型,现在,您可以在搭载 M1 和 Intel 芯片的 Mac 上实现加速的 CPU 和 GPU 训练。
例如,M1 芯片搭载功能强大的新型 8 核 CPU 和多达 8 核 GPU,均针对 Mac 上的 ML 训练任务进行了优化。在下图中,您可以看到针对 Mac 优化的 TensorFlow 2.4 如何在搭载 M1 和 Intel 芯片的通用型号 Mac 上实现巨大的性能提升。
▲在搭载 M1 和 Intel 芯片的 13 英寸 MacBook Pro 上使用 ML Compute 时对常见模型训练影响,以每批秒数显示,数字越小表示训练时间越短
▲在搭载 Intel 芯片的 2019 Mac Pro 上使用 ML Compute 时对常见模型的训练影响,以每批秒数显示,数字越小表示训练时间越短
开始使用针对 Mac 优化的 TensorFlow
用户无需对其现有的 TensorFlow 脚本进行任何更改即可使用 ML Compute 用作 TensorFlow 和 TensorFlow 插件的后端。
首先,请访问 Apple 的 GitHub 仓库,了解如何下载和安装 Mac 优化的 TensorFlow 2.4。
在不久的将来,谷歌会将该版本集成到 TensorFlow master 分支中,使用户能更轻松地进行此类更新,从而获得这些性能数据。
您可以在 Apple 的机器学习网站上了解 ML Compute 框架细节。
责任编辑:haq
-
芯片
+关注
关注
455文章
50756浏览量
423335 -
谷歌
+关注
关注
27文章
6166浏览量
105333 -
苹果
+关注
关注
61文章
24401浏览量
198606 -
intel
+关注
关注
19文章
3482浏览量
185949
发布评论请先 登录
相关推荐
评论