0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

为什么半监督学习是机器学习的未来?

深度学习自然语言处理 来源:深度学习自然语言处理 作者:Andre Ye 2020-11-27 10:42 次阅读

为什么半监督学习是机器学习的未来。

监督学习是人工智能领域的第一种学习类型。从它的概念开始,无数的算法,从简单的逻辑回归到大规模的神经网络,都已经被研究用来提高精确度和预测能力。

然而,一个重大突破揭示了添加“无监督数据”可以提高模型泛化和性能。事实上,在非常多的场景中,带有标签的数据并不容易获得。半监督学习可以在标准的任务中实现SOTA的效果,只需要一小部分的有标记数据 —— 数百个训练样本。

在这个我们对半监督学习的探索中,我们会有:

半监督学习简介。什么是半监督学习,它与其他学习方法相比如何,半监督学习算法的框架/思维过程是什么?

算法:Semi-Supervised GANs。与传统GANs的比较,过程的解释,半监督GANs的性能。

用例和机器学习的未来。为什么半监督学习会有如此大的需求,哪里可以应用。

半监督学习介绍

半监督学习算法代表了监督和非监督算法的中间地带。虽然没有正式定义为机器学习的“第四个”元素(监督、无监督、强化),但它将前两个方面结合成一种自己的方法。

这些算法操作的数据有一些标签,但大部分是没有标签的。传统上,人们要么选择有监督学习的方式,只对带有标签的数据进行操作,这将极大地减小数据集的规模,要么,就会选择无监督学习的方式,丢弃标签保留数据集的其余部分,然后做比如聚类之类的工作。

这在现实世界中是很常见的。由于标注是很昂贵的,特别是大规模数据集,特别是企业用途的,可能只有几个标签。例如,考虑确定用户活动是否具有欺诈性。在100万用户中,该公司知道有1万用户是这样的,但其他9万用户可能是恶意的,也可能是良性的。半监督学习允许我们操作这些类型的数据集,而不必在选择监督学习或非监督学习时做出权衡。

一般来说,半监督学习算法在这个框架上运行:

半监督机器学习算法使用有限的标记样本数据集来训练自己,从而形成一个“部分训练”的模型。

部分训练的模型对未标记的数据进行标记。由于样本标记数据集有许多严重的限制(例如,在现实数据中的选择偏差),标记的结果被认为是“伪标签”数据。

结合标记和伪标签数据集,创建一个独特的算法,结合描述和预测方面的监督和非监督学习。

半监督学习利用分类过程来识别数据资产,利用聚类过程将其分成不同的部分。

算法:Semi-Supervised GAN

半监督的GAN,简称为SGAN,是[生成对抗网络](https://medium.com/analytics-vidhya/gans-for-one -an-直觉解释-革命概念-2f962c858b95)架构的一个变体,用于解决半监督学习问题。

在传统的GAN中,判别器被训练来预测由生成器模型生成的图像是真实的还是假的,允许它从图像中学习判别特征,即使没有标签。尽管大多数人通常在GANs中使用训练很好的生成器,可以生成和数据集中相似的图像,判别器还是可以通过以转移学习作为起点在相同的数据集上建立分类器,允许监督任务从无监督训练中受益。由于大部分的图像特征已经被学习,因此进行分类的训练时间和准确率会更好。

然而,在SGAN中,判别器同时接受两种模式的训练:无监督和监督。

在无监督模式中,需要区分真实图像和生成的图像,就像在传统的GAN中一样。

在监督模式中,需要将一幅图像分类为几个类,就像在标准的神经网络分类器中一样。

为了同时训练这两种模式,判别器必须输出1 + n个节点的值,其中1表示“真或假”节点,n是预测任务中的类数。

在半监督GAN中,对判别器模型进行更新,预测K+1个类,其中K为预测问题中的类数,并为一个新的“假”类添加额外的类标签。它涉及到同时训练无监督分类任务和有监督分类任务的判别器模型。整个数据集都可以通过SGAN进行传递 —— 当一个训练样本有标签时,判别器的权值将被调整,否则,分类任务将被忽略,判别器将调整权值以更好地区分真实的图像和生成的图像。

虽然允许SGAN进行无监督训练,允许模型从一个非常大的未标记数据集中学习非常有用的特征提取,但有监督学习允许模型利用提取的特征并将其用于分类任务。其结果是一个分类器可以在像MNIST这样的标准问题上取得令人难以置信的结果,即使是在非常非常少的标记样本(数十到数百个)上进行训练。

SGAN巧妙地结合了无监督和监督学习的方面,强强联合,以最小的标签量,产生难以置信的结果。

用例和机器学习的未来

在一个可用数据量呈指数级增长的时代,无监督数据根本不能停下来等待标注。无数真实世界的数据场景会像这样出现 —— 例如,YouTube视频或网站内容。从爬虫引擎和内容聚合系统到图像和语音识别,半监督学习被广泛应用。

半监督学习将监督学习和非监督学习的过拟合和“不拟合”倾向(分别)结合起来的能力,创建了一个模型,在给出最小数量的标记数据和大量的未标记数据的情况下,可以出色地执行分类任务。除了分类任务,半监督算法还有许多其他用途,如增强聚类和异常检测。尽管这一领域本身相对较新,但由于在当今的数字领域中发现了巨大的需求,算法一直在不断地被创造和完善。

半监督学习确实是机器学习的未来。

原文标题:比监督学习做的更好:半监督学习

文章出处:【微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100720
  • 机器学习
    +关注

    关注

    66

    文章

    8408

    浏览量

    132573

原文标题:比监督学习做的更好:半监督学习

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是机器学习?通过机器学习方法能解决哪些问题?

    来源:Master编程树“机器学习”最初的研究动机是让计算机系统具有人的学习能力以便实现人工智能。因为没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的
    的头像 发表于 11-16 01:07 387次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    时空引导下的时间序列自监督学习框架

    【导读】最近,香港科技大学、上海AI Lab等多个组织联合发布了一篇时间序列无监督预训练的文章,相比原来的TS2Vec等时间序列表示学习工作,核心在于提出了将空间信息融入到预训练阶段,即在预训练阶段
    的头像 发表于 11-15 11:41 241次阅读
    时空引导下的时间序列自<b class='flag-5'>监督学习</b>框架

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习机器
    的头像 发表于 11-15 09:19 434次阅读

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多威廉希尔官方网站 ,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2480次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    【《大语言模型应用指南》阅读体验】+ 基础知识学习

    收集海量的文本数据作为训练材料。这些数据集不仅包括语法结构的学习,还包括对语言的深层次理解,如文化背景、语境含义和情感色彩等。 自监督学习:模型采用自监督学习策略,在大量无标签文本数据上学习
    发表于 08-02 11:03

    【《大语言模型应用指南》阅读体验】+ 基础篇

    章节最后总结了机器学习的分类:有监督学习、无监督学习监督学习、自
    发表于 07-25 14:33

    神经网络如何用无监督算法训练

    神经网络作为深度学习的重要组成部分,其训练方式多样,其中无监督学习是一种重要的训练策略。无监督学习旨在从未标记的数据中发现数据内在的结构、模式或规律,从而提取有用的特征表示。这种训练方式对于大规模未
    的头像 发表于 07-09 18:06 784次阅读

    深度学习中的无监督学习方法综述

    应用中往往难以实现。因此,无监督学习在深度学习中扮演着越来越重要的角色。本文旨在综述深度学习中的无监督学习方法,包括自编码器、生成对抗网络、聚类算法等,并分析它们的原理、应用场景以及优
    的头像 发表于 07-09 10:50 688次阅读

    人工智能、机器学习和深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning, DL)已成为
    的头像 发表于 07-03 18:22 1272次阅读

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习
    的头像 发表于 07-02 11:25 1001次阅读

    机器学习在数据分析中的应用

    随着大数据时代的到来,数据量的爆炸性增长对数据分析提出了更高的要求。机器学习作为一种强大的工具,通过训练模型从数据中学习规律,为企业和组织提供了更高效、更准确的数据分析能力。本文将深入探讨机器
    的头像 发表于 07-02 11:22 614次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习和深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着威廉希尔官方网站 的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1337次阅读

    名单公布!【书籍评测活动NO.35】如何用「时间序列与机器学习」解锁未来

    设备的运行状况,生成各种维度的报告。 同时,通过大数据分析和机器学习威廉希尔官方网站 ,可以对业务进行预测和预警,从而协助社会和企业进行科学决策、降低成本并创造新的价值。 当今时代,数据无处不在,而时间序列数据更是
    发表于 06-25 15:00

    机器学习基础知识全攻略

    监督学习通常是利用带有专家标注的标签的训练数据,学习一个从输入变量X到输入变量Y的函数映射。Y = f (X),训练数据通常是(n×x,y)的形式,其中n代表训练样本的大小,x和y分别是变量X和Y的样本值。
    发表于 02-25 13:53 240次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>基础知识全攻略

    2024年AI领域将会有哪些新突破呢?

    传统的机器学习需要大量的标记数据进行训练,但自监督学习可以通过无监督的方式从大规模未标记的数据中学习到更有用的表示形式,从而提高模型的性能。
    的头像 发表于 01-24 09:58 2008次阅读