0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

量子计算最新研究进展:在71个格点的超冷原子量子模拟器中求解施温格方程

工程师邓生 来源:中国科学报 作者:中国科学报 2020-11-20 15:48 次阅读

原标题:中国科大量子计算和interwetten与威廉的赔率体系 研究突破再登《自然》 在71个格点的超冷原子量子模拟器中求解施温格方程

示意图:规范场理论描述基本粒子之间的相互作用、产生和湮灭过程可以用晶格中超冷原子之间的相互作用及其排布模式来模拟。(制图:石千惠、梁琰)

北京时间11月19日,《自然》杂志发表了中国科学威廉希尔官方网站 大学教授潘建伟、苑震生等最新研究进展,在71个格点的超冷原子量子模拟器中求解施温格方程。这一成果成功利用规模化量子计算和量子模拟方法求解了复杂物理问题。

据悉,研究团队同德国、意大利科学家合作,开发了专用的量子计算机——71个格点的超冷原子光晶格量子模拟器,通过精确调控成功模拟量子电动力学方程施温格模型,通过操控束缚在其中的超冷原子,首次模拟了规范场与物质场之间的相互作用和转化,观测到了局域规范不变量,并首次使用微观量子调控手段在量子多体系统中验证了描述电荷与电场关系的高斯定理。

《自然》杂志审稿人高度评价称:“这是量子模拟方法研究晶格规范场的一个重要的里程碑。它将受到多个学科领域的关注,从基本粒子、晶格规范场、和量子信息方面的理论学家,到原子分子光学、固态物理领域的实验物理学家。”;“迈出了模拟晶格规范场理论的真正一步:从实现量子模拟器的模块到对特定模型的完全模拟”。

规范场理论是现代物理学的根基,如描述基本粒子相互作用的量子电动力学、标准模型等都是满足特定群对称性的规范场理论。但是,各种规范场方程求解的计算复杂度之高,对超级计算机提出挑战,量子计算机被寄予厚望。于是,专用量子计算机——量子模拟器应运而生。但是,在目前国际上对规范场模型的初步量子模拟研究中,要么是体系太小,仅有2~4个粒子,不具备局域规范不变性;要么无法同时产生规范场和物质场,更不能研究这两种场之间的相互作用和转化。因此,此前的研究都无法观测规范场理论最基本的特性——局域规范不变性。

为了解决这一问题,中国科大的研究团队开发了独特的自旋依赖超晶格、显微镜吸收成像、粒子数分辨探测等量子调控和测量威廉希尔官方网站 ,在超冷原子量子模拟器中首先实现了对Z2规范对称性的规范场模型单元哈密顿量的研究,相关成果2017年发表于《自然-物理》。今年6月,他们又提出并实现了光晶格中原子的深度制冷,解决了量子模拟器温度过高缺陷过多的问题,实验制备了近百个原子级别的规模化量子模拟器,成果发表于《科学》杂志。此次最新进展在使用规模化量子模拟器求解复杂物理问题的道路上取得了突破性进展。

未来,该团队将进一步使用量子模拟的方法研究具有其他群对称性的、更高空间维度的规范场模型,并可推广到远离平衡态的规范场系统,研究真空衰变、与拓扑角度相关的动力学过程等重要物理难题。

此项研究工作得到科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持。

论文链接:https://doi.org/10.1038/s41586-020-2910-8

责任编辑:PSY

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 模拟器
    +关注

    关注

    2

    文章

    875

    浏览量

    43211
  • 物理
    +关注

    关注

    0

    文章

    101

    浏览量

    25084
  • 量子计算
    +关注

    关注

    4

    文章

    1097

    浏览量

    34941
收藏 人收藏

    评论

    相关推荐

    郑州大学钙钛矿量子闪烁体研究方面取得重要进展

    异质结闪烁体的设计、原理及性能 近日,郑州大学物理学院、中原之光实验室宋继教授团队钙钛矿量子闪烁体研究方向取得重要
    的头像 发表于 11-22 06:30 146次阅读
    郑州大学<b class='flag-5'>在</b>钙钛矿<b class='flag-5'>量子</b><b class='flag-5'>点</b>闪烁体<b class='flag-5'>研究</b>方面取得重要<b class='flag-5'>进展</b>

    体布拉光栅(VBGs)量子光学的应用

    体布拉光栅(VBGs)量子光学的应用窄带滤波,光振幅调制量子光学是近年来发展迅速且取得显
    的头像 发表于 10-17 08:04 275次阅读
    体布拉<b class='flag-5'>格</b>光栅(VBGs)<b class='flag-5'>在</b><b class='flag-5'>量子</b>光学<b class='flag-5'>中</b>的应用

    【《计算》阅读体验】量子计算

    机的实现 量子计算机的关键在于量子比特。量子比特并行计算完成之后,测量只能得。2“结果
    发表于 07-13 22:15

    量子计算+光伏!本源研究成果入选2023年度“中国地理科学十大研究进展

    近日中国地理学会公布了2023年度“中国地理科学十大研究进展”本源量子参与的“量子地理计算威廉希尔官方网站 、软件及应用”研究成果获选系
    的头像 发表于 05-10 08:22 501次阅读
    <b class='flag-5'>量子</b><b class='flag-5'>计算</b>+光伏!本源<b class='flag-5'>研究</b>成果入选2023年度“中国地理科学十大<b class='flag-5'>研究进展</b>”

    中国科学威廉希尔官方网站 大学科研团队取得量子计算研究进展

    中国科学威廉希尔官方网站 大学科研团队取得量子计算研究进展 据央视新闻报道,中国科学威廉希尔官方网站 大学科研团队利用自主研发的关键设备,利用“自底而上”的量子模拟
    的头像 发表于 05-08 16:40 705次阅读

    通过 ORCA-Quest 成像单原子阵列以实现中性原子量子计算

    量子计算领域的主要目标是创建大规模且容错的通用量子计算机。量子超越,意味着量子
    的头像 发表于 04-15 06:34 311次阅读
    通过 ORCA-Quest 成像单<b class='flag-5'>原子</b>阵列以实现中性<b class='flag-5'>原子量子</b><b class='flag-5'>计算</b>

    NVIDIA 推出云量子计算模拟微服务

    NVIDIA 量子模拟平台将通过各大云提供商提供,帮助科学家推进量子计算和算法研究 NVIDIA 的量子仿真平台帮助科学家推进
    发表于 03-19 11:27 439次阅读
    NVIDIA 推出云<b class='flag-5'>量子</b><b class='flag-5'>计算</b>机<b class='flag-5'>模拟</b>微服务

    量子计算机重构未来 | 阅读体验】 跟我一起漫步量子计算

    的未来。首先,量子计算药物研发领域具有颠覆性的潜力。通过模拟分子的复杂相互作用,量子计算机可
    发表于 03-13 19:28

    量子

    机可以模拟原子和分子之间的相互作用,帮助科学家设计新材料、药物,甚至加速新材料的发现过程。这将有助于推动科学研究进展,加快新威廉希尔官方网站 的开发。 总的来说,
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    的处理(CPU)就是由许多逻辑门电路组成的。 量子计算机与电子计算机最大的区别在于它们使用量子比特(qubit)而不是电子比特(bit)来
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    本书内容从目录可以看出本书主要是两部分内容,一部分介绍量子计算机原理,一部分介绍其应用。 其实个人也是抱着对这两问题的兴趣来看的。 究竟什么是量子
    发表于 03-11 12:50

    量子计算机重构未来 | 阅读体验】第二章关键知识

    量子计算机的工作原理--量子叠加的概念。即手指朝上代表逻辑1,手指朝下代表逻辑0,但是呢,如果手指中间怎么表示呢?这就是量子比特
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】+ 初识量子计算

    欣喜收到《量子计算机——重构未来》一书,感谢电子发烧友论坛提供了一让我了解量子计算机的机会! 自己对电子
    发表于 03-05 17:37

    量子计算机重构未来 | 阅读体验】初探

    。也就是说,量子计算的主要能力,提高运算速度。 这一可能和量子计算没有任何关系,纯碎个人理解。
    发表于 03-04 23:09

    原子阵列实现容错通用量子计算的前景和挑战

    原子阵列量子计算由以下三核心要素组成(图1):(1)利用原子内态编码量子比特。
    的头像 发表于 01-22 11:29 892次阅读
    <b class='flag-5'>原子</b>阵列实现容错通用<b class='flag-5'>量子</b><b class='flag-5'>计算</b>的前景和挑战