0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ZYNQ SOC案例开发:AXI DMA使用解析及环路测试

电子设计 来源:csdn 作者:没落骑士 2020-12-31 09:52 次阅读

一、AXI DMA介绍

本篇博文讲述AXI DMA的一些使用总结,硬件IP子系统搭建与SDK C代码封装参考米联客ZYNQ教程。若想让ZYNQ的PS与PL两部分高速数据传输,需要利用PS的HP(高性能)接口通过AXI_DMA完成数据搬移,这正符合PG021 AXI DMA v7.1 LogiCORE IP Product Guide中介绍的AXI DMA的应用场景:The AXI DMA provides high-speed data movement between system memory and an AXI4-Stream-based target IP such as AXI Ethernet.

如图,AXI DMA主要包括Memory Map和 Stream两部分接口,前者连接PS子系统,后者则连接带有流接口的PL IP核。

o4YBAF9uKIOATJUNAAE0P3Z7-_o177.png

其最简单的事直接寄存器模式(Simple DMA),这里需要注意地址对齐的问题:当没有使能地址重对齐的情况下,如果AXI Memory Map数据位宽是32bit,则搬移数据所在地址必须在0x0,0x4,0x8等起始地址上。接下来关注DMA IP核配置界面主要参数

pIYBAF9uKIaAYldxAAE4qoOga5I101.png

AXI DMA可以有两个传输方向:读通道和写通道,依次为MM2S和S2MM方向。也就是说“读”和“写”是DMA主动对CPU发起的操作。重点查看以下几个参数:

1 Width of Buffer Length Register:

在直接寄存器模式下,它指定在MM2S_LENGTH和S2MM_LENGTH寄存器的有效比特数。MM2S_LENGTH寄存器指定了MM2S通道传输数据字节数,当CPU写入非零值时开始进行PS到PL的数据搬移,而S2MM_LENGTH对应另一个数据流方向。比特数直接与对应寄存器可写入的最大数直接相关,传输最大字节数= 2^(Width of Buffer Length Register)。此处保持默认14bit,也就是说启动DMA传输的最大数据量是16384byte。

2 Memory Map Data Width:

该参数指定了Memory Map侧数据接口宽度,选定32bit后搬移数据所在内存地址必须与4对齐。

3 Max Burst Size:

之前在讲解PS子系统内部的DMA时介绍过DMA的Burst概念,即分批次传输数据块。官方IP核文档解释为:

o4YBAF9uKIeAbLC0AAC8N-b_FIg486.png

理解起来burst size确定了突发周期的最大数值,也就是burst size越大,突发粒度越大(单次传输的数据个数越多)。这与PS端DMA有所区别,显然与 PS DMA的burst length意义相近。笔者也进行过尝试,当启动传输数据量相同时,burst size设置较大情况下,每批次传输数据量更多。

二、AXI DMA Loop IP子系统

在利用ZYNQ搭建系统时,经常需要利用各种IP核做所谓的“计算加速”,将重复性高 计算量大 占用较大CPU资源的底层处理交给各个IP核完成。这时PS ->DMA ->PL -> DMA -> PS的环路架构非常适用。这里使用AXI Stream Data FIFO代替自定义IP核作为演示,硬件IP子系统如下:

pIYBAF9uKI2ASmNmAAUnucDov-k027.png

三、SDK 官方demo解析

首先分析下官方的demo。

pIYBAF9uKI-ABMg7AAE0T6naMPY767.png

/******************************************************************************
*
* Copyright (C) 2010 - 2016 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* XILINX BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xaxidma_example_simple_intr.c
*
* This file demonstrates how to use the xaxidma driver on the Xilinx AXI
* DMA core (AXIDMA) to transfer packets.in interrupt mode when the AXIDMA core
* is configured in simple mode
*
* This code assumes a loopback hardware widget is connected to the AXI DMA
* core for data packet loopback.
*
* To see the debug print, you need a Uart16550 or uartlite in your system,
* and please set "-DDEBUG" in your compiler options. You need to rebuild your
* software executable.
*
* Make sure that MEMORY_BASE is defined properly as per the HW system. The
* h/w system built in Area mode has a maximum DDR memory limit of 64MB. In
* throughput mode, it is 512MB. These limits are need to ensured for
* proper operation of this code.
*
*
*

 * MODIFICATION HISTORY:
 *
 * Ver   Who  Date     Changes
 * ----- ---- -------- -------------------------------------------------------
 * 4.00a rkv  02/22/11 New example created for simple DMA, this example is for
 *                  simple DMA,Added interrupt support for Zynq.
 * 4.00a srt  08/04/11 Changed a typo in the RxIntrHandler, changed
 *               XAXIDMA_DMA_TO_DEVICE to XAXIDMA_DEVICE_TO_DMA
 * 5.00a srt  03/06/12 Added Flushing and Invalidation of Caches to fix CRs
 *               648103, 648701.
 *               Added V7 DDR Base Address to fix CR 649405.
 * 6.00a srt  03/27/12 Changed API calls to support MCDMA driver.
 * 7.00a srt  06/18/12 API calls are reverted back for backward compatibility.
 * 7.01a srt  11/02/12 Buffer sizes (Tx and Rx) are modified to meet maximum
 *               DDR memory limit of the h/w system built with Area mode
 * 7.02a srt  03/01/13 Updated DDR base address for IPI designs (CR 703656).
 * 9.1   adk  01/07/16 Updated DDR base address for Ultrascale (CR 799532) and
 *               removed the defines for S6/V6.
 * 9.2   vak  15/04/16 Fixed compilation warnings in the example
 * 

*
* ***************************************************************************
*/

/***************************** Include Files *********************************/

#include "xaxidma.h"
#include "xparameters.h"
#include "xil_exception.h"
#include "xdebug.h"

#ifdef XPAR_UARTNS550_0_BASEADDR
#include "xuartns550_l.h" /* to use uartns550 */
#endif

#ifdef XPAR_INTC_0_DEVICE_ID
#include "xintc.h"
#else
#include "xscugic.h"
#endif

/************************** Constant Definitions *****************************/

/*
* Device hardware build related constants.
*/

#define DMA_DEV_ID XPAR_AXIDMA_0_DEVICE_ID

#ifdef XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
#define DDR_BASE_ADDR XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
#elif XPAR_MIG7SERIES_0_BASEADDR
#define DDR_BASE_ADDR XPAR_MIG7SERIES_0_BASEADDR
#elif XPAR_MIG_0_BASEADDR
#define DDR_BASE_ADDR XPAR_MIG_0_BASEADDR
#elif XPAR_PSU_DDR_0_S_AXI_BASEADDR
#define DDR_BASE_ADDR XPAR_PSU_DDR_0_S_AXI_BASEADDR
#endif

#ifndef DDR_BASE_ADDR
#warning CHECK FOR THE VALID DDR ADDRESS IN XPARAMETERS.H, /
DEFAULT SET TO 0x01000000
#define MEM_BASE_ADDR 0x01000000
#else
#define MEM_BASE_ADDR (DDR_BASE_ADDR + 0x1000000)
#endif

#ifdef XPAR_INTC_0_DEVICE_ID
#define RX_INTR_ID XPAR_INTC_0_AXIDMA_0_S2MM_INTROUT_VEC_ID
#define TX_INTR_ID XPAR_INTC_0_AXIDMA_0_MM2S_INTROUT_VEC_ID
#else
#define RX_INTR_ID XPAR_FABRIC_AXIDMA_0_S2MM_INTROUT_VEC_ID
#define TX_INTR_ID XPAR_FABRIC_AXIDMA_0_MM2S_INTROUT_VEC_ID
#endif

#define TX_BUFFER_BASE (MEM_BASE_ADDR + 0x00100000)
#define RX_BUFFER_BASE (MEM_BASE_ADDR + 0x00300000)
#define RX_BUFFER_HIGH (MEM_BASE_ADDR + 0x004FFFFF)

#ifdef XPAR_INTC_0_DEVICE_ID
#define INTC_DEVICE_ID XPAR_INTC_0_DEVICE_ID
#else
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID
#endif

#ifdef XPAR_INTC_0_DEVICE_ID
#define INTC XIntc
#define INTC_HANDLER XIntc_InterruptHandler
#else
#define INTC XScuGic
#define INTC_HANDLER XScuGic_InterruptHandler
#endif

/* Timeout loop counter for reset
*/
#define RESET_TIMEOUT_COUNTER 10000

#define TEST_START_VALUE 0xC
/*
* Buffer and Buffer Descriptor related constant definition
*/
#define MAX_PKT_LEN 0x100

#define NUMBER_OF_TRANSFERS 10

/* The interrupt coalescing threshold and delay timer threshold
* Valid range is 1 to 255
*
* We set the coalescing threshold to be the total number of packets.
* The receive side will only get one completion interrupt for this example.
*/

/**************************** Type Definitions *******************************/

/***************** Macros (Inline Functions) Definitions *********************/

/************************** Function Prototypes ******************************/
#ifndef DEBUG
extern void xil_printf(const char *format, ...);
#endif

#ifdef XPAR_UARTNS550_0_BASEADDR
static void Uart550_Setup(void);
#endif

static int CheckData(int Length, u8 StartValue);
static void TxIntrHandler(void *Callback);
static void RxIntrHandler(void *Callback);

static int SetupIntrSystem(INTC * IntcInstancePtr,
XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId);
static void DisableIntrSystem(INTC * IntcInstancePtr,
u16 TxIntrId, u16 RxIntrId);

/************************** Variable Definitions *****************************/
/*
* Device instance definitions
*/

static XAxiDma AxiDma; /* Instance of the XAxiDma */

static INTC Intc; /* Instance of the Interrupt Controller */

/*
* Flags interrupt handlers use to notify the application context the events.
*/
volatile int TxDone;
volatile int RxDone;
volatile int Error;

/*****************************************************************************/
/**
*
* Main function
*
* This function is the main entry of the interrupt test. It does the following:
* Set up the output terminal if UART16550 is in the hardware build
* Initialize the DMA engine
* Set up Tx and Rx channels
* Set up the interrupt system for the Tx and Rx interrupts
* Submit a transfer
* Wait for the transfer to finish
* Check transfer status
* Disable Tx and Rx interrupts
* Print test status and exit
*
* @param None
*
* @return
* - XST_SUCCESS if example finishes successfully
* - XST_FAILURE if example fails.
*
* @note None.
*
******************************************************************************/
int main(void)
{
int Status;
XAxiDma_Config *Config;
int Tries = NUMBER_OF_TRANSFERS;
int Index;
u8 *TxBufferPtr;
u8 *RxBufferPtr;
u8 Value;

TxBufferPtr = (u8 *)TX_BUFFER_BASE ;
RxBufferPtr = (u8 *)RX_BUFFER_BASE;
/* Initial setup for Uart16550 */
#ifdef XPAR_UARTNS550_0_BASEADDR

Uart550_Setup();

#endif

xil_printf("/r/n--- Entering main() --- /r/n");

Config = XAxiDma_LookupConfig(DMA_DEV_ID);
if (!Config) {
xil_printf("No config found for %d/r/n", DMA_DEV_ID);

return XST_FAILURE;
}

/* Initialize DMA engine */
Status = XAxiDma_CfgInitialize(&AxiDma, Config);

if (Status != XST_SUCCESS) {
xil_printf("Initialization failed %d/r/n", Status);
return XST_FAILURE;
}

if(XAxiDma_HasSg(&AxiDma)){
xil_printf("Device configured as SG mode /r/n");
return XST_FAILURE;
}

/* Set up Interrupt system */
Status = SetupIntrSystem(&Intc, &AxiDma, TX_INTR_ID, RX_INTR_ID);
if (Status != XST_SUCCESS) {

xil_printf("Failed intr setup/r/n");
return XST_FAILURE;
}

/* Disable all interrupts before setup */

XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
XAXIDMA_DMA_TO_DEVICE);

XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
XAXIDMA_DEVICE_TO_DMA);

/* Enable all interrupts */
XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
XAXIDMA_DMA_TO_DEVICE);

XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
XAXIDMA_DEVICE_TO_DMA);

/* Initialize flags before start transfer test */
TxDone = 0;
RxDone = 0;
Error = 0;

Value = TEST_START_VALUE;

for(Index = 0; Index TxBufferPtr[Index] = Value;

Value = (Value + 1) & 0xFF;
}

/* Flush the SrcBuffer before the DMA transfer, in case the Data Cache
* is enabled
*/
Xil_DCacheFlushRange((UINTPTR)TxBufferPtr, MAX_PKT_LEN);
#ifdef __aarch64__
Xil_DCacheFlushRange((UINTPTR)RxBufferPtr, MAX_PKT_LEN);
#endif

/* Send a packet */
for(Index = 0; Index

Status = XAxiDma_SimpleTransfer(&AxiDma,(UINTPTR) RxBufferPtr,
MAX_PKT_LEN, XAXIDMA_DEVICE_TO_DMA);

if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

Status = XAxiDma_SimpleTransfer(&AxiDma,(UINTPTR) TxBufferPtr,
MAX_PKT_LEN, XAXIDMA_DMA_TO_DEVICE);

if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

/*
* Wait TX done and RX done
*/
while (!TxDone && !RxDone && !Error) {
/* NOP */
}

if (Error) {
xil_printf("Failed test transmit%s done, "
"receive%s done/r/n", TxDone? "":" not",
RxDone? "":" not");

goto Done;

}

/*
* Test finished, check data
*/
Status = CheckData(MAX_PKT_LEN, 0xC);
if (Status != XST_SUCCESS) {
xil_printf("Data check failed/r/n");
goto Done;
}
}

xil_printf("AXI DMA interrupt example test passed/r/n");

/* Disable TX and RX Ring interrupts and return success */

DisableIntrSystem(&Intc, TX_INTR_ID, RX_INTR_ID);

Done:
xil_printf("--- Exiting main() --- /r/n");

return XST_SUCCESS;
}

#ifdef XPAR_UARTNS550_0_BASEADDR
/*****************************************************************************/
/*
*
* Uart16550 setup routine, need to set baudrate to 9600 and data bits to 8
*
* @param None
*
* @return None
*
* @note None.
*
******************************************************************************/
static void Uart550_Setup(void)
{

XUartNs550_SetBaud(XPAR_UARTNS550_0_BASEADDR,
XPAR_XUARTNS550_CLOCK_HZ, 9600);

XUartNs550_SetLineControlReg(XPAR_UARTNS550_0_BASEADDR,
XUN_LCR_8_DATA_BITS);
}
#endif

/*****************************************************************************/
/*
*
* This function checks data buffer after the DMA transfer is finished.
*
* We use the static tx/rx buffers.
*
* @param Length is the length to check
* @param StartValue is the starting value of the first byte
*
* @return
* - XST_SUCCESS if validation is successful
* - XST_FAILURE if validation is failure.
*
* @note None.
*
******************************************************************************/
static int CheckData(int Length, u8 StartValue)
{
u8 *RxPacket;
int Index = 0;
u8 Value;

RxPacket = (u8 *) RX_BUFFER_BASE;
Value = StartValue;

/* Invalidate the DestBuffer before receiving the data, in case the
* Data Cache is enabled
*/
#ifndef __aarch64__
Xil_DCacheInvalidateRange((u32)RxPacket, Length);
#endif

for(Index = 0; Index if (RxPacket[Index] != Value) {
xil_printf("Data error %d: %x/%x/r/n",
Index, RxPacket[Index], Value);

return XST_FAILURE;
}
Value = (Value + 1) & 0xFF;
}

return XST_SUCCESS;
}

/*****************************************************************************/
/*
*
* This is the DMA TX Interrupt handler function.
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* is present, then sets the TxDone.flag
*
* @param Callback is a pointer to TX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void TxIntrHandler(void *Callback)
{

u32 IrqStatus;
int TimeOut;
XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

/* Read pending interrupts */
IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DMA_TO_DEVICE);

/* Acknowledge pending interrupts */

XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DMA_TO_DEVICE);

/*
* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {

return;
}

/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

Error = 1;

/*
* Reset should never fail for transmit channel
*/
XAxiDma_Reset(AxiDmaInst);

TimeOut = RESET_TIMEOUT_COUNTER;

while (TimeOut) {
if (XAxiDma_ResetIsDone(AxiDmaInst)) {
break;
}

TimeOut -= 1;
}

return;
}

/*
* If Completion interrupt is asserted, then set the TxDone flag
*/
if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

TxDone = 1;
}
}

/*****************************************************************************/
/*
*
* This is the DMA RX interrupt handler function
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* is present, then it sets the RxDone flag.
*
* @param Callback is a pointer to RX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void RxIntrHandler(void *Callback)
{
u32 IrqStatus;
int TimeOut;
XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

/* Read pending interrupts */
IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DEVICE_TO_DMA);

/* Acknowledge pending interrupts */
XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DEVICE_TO_DMA);

/*
* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
return;
}

/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

Error = 1;

/* Reset could fail and hang
* NEED a way to handle this or do not call it??
*/
XAxiDma_Reset(AxiDmaInst);

TimeOut = RESET_TIMEOUT_COUNTER;

while (TimeOut) {
if(XAxiDma_ResetIsDone(AxiDmaInst)) {
break;
}

TimeOut -= 1;
}

return;
}

/*
* If completion interrupt is asserted, then set RxDone flag
*/
if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

RxDone = 1;
}
}

/*****************************************************************************/
/*
*
* This function setups the interrupt system so interrupts can occur for the
* DMA, it assumes INTC component exists in the hardware system.
*
* @param IntcInstancePtr is a pointer to the instance of the INTC.
* @param AxiDmaPtr is a pointer to the instance of the DMA engine
* @param TxIntrId is the TX channel Interrupt ID.
* @param RxIntrId is the RX channel Interrupt ID.
*
* @return
* - XST_SUCCESS if successful,
* - XST_FAILURE.if not succesful
*
* @note None.
*
******************************************************************************/
static int SetupIntrSystem(INTC * IntcInstancePtr,
XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId)
{
int Status;

#ifdef XPAR_INTC_0_DEVICE_ID

/* Initialize the interrupt controller and connect the ISRs */
Status = XIntc_Initialize(IntcInstancePtr, INTC_DEVICE_ID);
if (Status != XST_SUCCESS) {

xil_printf("Failed init intc/r/n");
return XST_FAILURE;
}

Status = XIntc_Connect(IntcInstancePtr, TxIntrId,
(XInterruptHandler) TxIntrHandler, AxiDmaPtr);
if (Status != XST_SUCCESS) {

xil_printf("Failed tx connect intc/r/n");
return XST_FAILURE;
}

Status = XIntc_Connect(IntcInstancePtr, RxIntrId,
(XInterruptHandler) RxIntrHandler, AxiDmaPtr);
if (Status != XST_SUCCESS) {

xil_printf("Failed rx connect intc/r/n");
return XST_FAILURE;
}

/* Start the interrupt controller */
Status = XIntc_Start(IntcInstancePtr, XIN_REAL_MODE);
if (Status != XST_SUCCESS) {

xil_printf("Failed to start intc/r/n");
return XST_FAILURE;
}

XIntc_Enable(IntcInstancePtr, TxIntrId);
XIntc_Enable(IntcInstancePtr, RxIntrId);

#else

XScuGic_Config *IntcConfig;

/*
* Initialize the interrupt controller driver so that it is ready to
* use.
*/
IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);
if (NULL == IntcConfig) {
return XST_FAILURE;
}

Status = XScuGic_CfgInitialize(IntcInstancePtr, IntcConfig,
IntcConfig->CpuBaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

XScuGic_SetPriorityTriggerType(IntcInstancePtr, TxIntrId, 0xA0, 0x3);

XScuGic_SetPriorityTriggerType(IntcInstancePtr, RxIntrId, 0xA0, 0x3);
/*
* Connect the device driver handler that will be called when an
* interrupt for the device occurs, the handler defined above performs
* the specific interrupt processing for the device.
*/
Status = XScuGic_Connect(IntcInstancePtr, TxIntrId,
(Xil_InterruptHandler)TxIntrHandler,
AxiDmaPtr);
if (Status != XST_SUCCESS) {
return Status;
}

Status = XScuGic_Connect(IntcInstancePtr, RxIntrId,
(Xil_InterruptHandler)RxIntrHandler,
AxiDmaPtr);
if (Status != XST_SUCCESS) {
return Status;
}

XScuGic_Enable(IntcInstancePtr, TxIntrId);
XScuGic_Enable(IntcInstancePtr, RxIntrId);

#endif

/* Enable interrupts from the hardware */

Xil_ExceptionInit();
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
(Xil_ExceptionHandler)INTC_HANDLER,
(void *)IntcInstancePtr);

Xil_ExceptionEnable();

return XST_SUCCESS;
}

/*****************************************************************************/
/**
*
* This function disables the interrupts for DMA engine.
*
* @param IntcInstancePtr is the pointer to the INTC component instance
* @param TxIntrId is interrupt ID associated w/ DMA TX channel
* @param RxIntrId is interrupt ID associated w/ DMA RX channel
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void DisableIntrSystem(INTC * IntcInstancePtr,
u16 TxIntrId, u16 RxIntrId)
{
#ifdef XPAR_INTC_0_DEVICE_ID
/* Disconnect the interrupts for the DMA TX and RX channels */
XIntc_Disconnect(IntcInstancePtr, TxIntrId);
XIntc_Disconnect(IntcInstancePtr, RxIntrId);
#else
XScuGic_Disconnect(IntcInstancePtr, TxIntrId);
XScuGic_Disconnect(IntcInstancePtr, RxIntrId);
#endif
}

xaxidma_example_simple_intr.c

主函数中依次完成了:DMA初始化,建立中断系统,使能DMA中断,初始化标志位及发送数据,启动DMA传输以及数据检测。中断部分的内容与PS DMA非常相近,传输完成后进入的中断函数中仅置位了发送或接收完成标志位:
static void TxIntrHandler(void *Callback)
{

u32 IrqStatus;
int TimeOut;
XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

/* Read pending interrupts */
IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DMA_TO_DEVICE);

/* Acknowledge pending interrupts */

XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DMA_TO_DEVICE);

/*
* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {

return;
}

/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

Error = 1;

/*
* Reset should never fail for transmit channel
*/
XAxiDma_Reset(AxiDmaInst);

TimeOut = RESET_TIMEOUT_COUNTER;

while (TimeOut) {
if (XAxiDma_ResetIsDone(AxiDmaInst)) {
break;
}

TimeOut -= 1;
}

return;
}

/*
* If Completion interrupt is asserted, then set the TxDone flag
*/
if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

TxDone = 1;
}
}

/*****************************************************************************/
/*
*
* This is the DMA RX interrupt handler function
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* is present, then it sets the RxDone flag.
*
* @param Callback is a pointer to RX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void RxIntrHandler(void *Callback)
{
u32 IrqStatus;
int TimeOut;
XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

/* Read pending interrupts */
IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DEVICE_TO_DMA);

/* Acknowledge pending interrupts */
XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DEVICE_TO_DMA);

/*
* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
return;
}

/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

Error = 1;

/* Reset could fail and hang
* NEED a way to handle this or do not call it??
*/
XAxiDma_Reset(AxiDmaInst);

TimeOut = RESET_TIMEOUT_COUNTER;

while (TimeOut) {
if(XAxiDma_ResetIsDone(AxiDmaInst)) {
break;
}

TimeOut -= 1;
}

return;
}

/*
* If completion interrupt is asserted, then set RxDone flag
*/
if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

RxDone = 1;
}
}

intrHandler

DMA启动传输部分如下,调用库函数XAxiDma_SimpleTransfer。以第一个为例,是将RxBufferPtr为数据首地址,MAX_PKT_LEN为字节数,XAXIDMA_DEVICE_TO_DMA为传输方向启动DMA传输数据。MAX_PKT_LEN不能超过之前IP核配置参数指定的16384byte,XAXIDMA_DEVICE_TO_DMA和XAXIDMA_DMA_TO_DEVICE依次指PL-> DMA ->PS以及PS->DMA -> PL方向,也就是PL就是其中的DEVICE。DMA启动函数只有一个地址,这是与PS端DMA最大的区别,因为数据搬移的另一侧是带有无地址的流接口的IP核,该侧“地址”由硬件连接决定。

o4YBAF9uKJGAUdpcAACVWDBNQ6s335.png

再来看看搬移数据内存首地址RxBufferPtr和TxBufferPtr.从下边的定义可见MEM_BASE_ADDR是DDR_BASE_ADDR加上一段偏移量的结果,DDR基地址数值从xparameters.h中查看。

o4YBAF9uKJOACK2QAACyTdi29gs886.jpg

四、函数重用封装

官方的代码比较乱,都写在main函数里,米联客教程init_intr_sys()函数完成整个中断系统的建立,将官方demo中main函数DMA测试之前关于中断部分的代码全部封装其中,包括DMA中断初始化,中断控制器初始化,使能中断异常,连接DMA发送与接收中断,DMA中断使能五个过程。

o4YBAF9uKJSAIm49AABrFCoVo1Q716.png

五、AXI总线信号ILA波形分析

AXI Stream主要接口:

tdata:数据tkeep:字节有效指示tlast:帧尾指示tready:准备就绪tvalid:数据有效指示

MM2S方向一旦tvalid拉高则触发ILA抓取信号波形。一帧数据有64个,每个数据32bit(4byte),一共正好为C代码中MAX_PKT_LEN数值,即256byte。

其中他keep信号比较关键。如当stream位宽为16bit,传输数据量为255byte时,tkeep信号在最后一个stream数据对应位置是2'b01指示第128个16bit数中最后一个数的高字节为upsize过程中无效填充数据。

后续本人会利用System Generator设计算法IP,之后集成到IP Integerator中作为CPU外设进行板级验证。继续学习!

编辑:hfy


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 寄存器
    +关注

    关注

    31

    文章

    5355

    浏览量

    120518
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10872

    浏览量

    212001
  • 数据传输
    +关注

    关注

    9

    文章

    1914

    浏览量

    64643
  • Zynq
    +关注

    关注

    10

    文章

    610

    浏览量

    47193
  • AXI
    AXI
    +关注

    关注

    1

    文章

    127

    浏览量

    16636
收藏 人收藏

    评论

    相关推荐

    ZYNQ 7035/7045开发板原理图

    ZYNQ 7035/7045开发板原理图
    发表于 12-05 13:46 0次下载

    Xilinx ZYNQ 7000系列SoC的功能特性

    本文介绍下Xilinx ZYNQ 7000系列SoC的功能特性、资源特性、封装兼容性以及如何订购器件。
    的头像 发表于 10-24 15:04 867次阅读
    Xilinx <b class='flag-5'>ZYNQ</b> 7000系列<b class='flag-5'>SoC</b>的功能特性

    环路测试的接线方法及原因

    环路测试是一种用于评估电子系统(如开关电源)稳定性和性能的重要测试方法。在环路测试中,正确的接线方法是确保
    的头像 发表于 10-06 16:49 936次阅读
    <b class='flag-5'>环路</b><b class='flag-5'>测试</b>的接线方法及原因

    如何测试高精度的环路性能

    电子发烧友网站提供《如何测试高精度的环路性能 .pdf》资料免费下载
    发表于 09-27 11:09 0次下载
    如何<b class='flag-5'>测试</b>高精度的<b class='flag-5'>环路</b>性能

    环路测试仪的工作原理是什么

    环路测试仪是一种用于测试和验证通信网络性能的设备,它能够模拟网络中的各种条件,以确保网络设备和系统在实际运行中能够达到预期的性能标准。环路测试
    的头像 发表于 09-12 14:37 489次阅读

    环路测试方法有哪几种

    环路测试(Loop Testing)是一种软件测试方法,它通过在软件内部创建循环来验证程序的循环结构是否正确。这种方法特别适用于测试循环控制结构,如for循环、while循环、do-w
    的头像 发表于 09-12 14:35 647次阅读

    环路测试的接线方法及原因 环路测试注入信号大小标准是多少

    环路测试,特别是针对开关电源的环路测试,是一种检测电源性能和稳定性的重要方法。其接线方法及原因可以从以下几个方面进行阐述: 接线方法 环路
    的头像 发表于 09-12 14:32 749次阅读

    示波器如何进行环路响应测试呢?

    示波器进行环路响应测试是一种评估电子系统稳定性和性能的重要威廉希尔官方网站 。环路响应通常指的是一个控制系统在受到扰动或输入信号变化时的输出反应。
    的头像 发表于 05-20 16:10 772次阅读

    SoC设计中总线协议AXI4与AXI3的主要区别详解

    AXI4和AXI3是高级扩展接口(Advanced eXtensible Interface)的两个不同版本,它们都是用于SoC(System on Chip)设计中的总线协议,用于处理器和其它外设之间的高速数据传输。
    的头像 发表于 05-10 11:29 6850次阅读
    <b class='flag-5'>SoC</b>设计中总线协议<b class='flag-5'>AXI</b>4与<b class='flag-5'>AXI</b>3的主要区别详解

    没用过zynq今天在看解析是发现汽车的CID上有用这个,不知道zynq有什么优势?

    没用过zynq今天在看解析是发现汽车的CID上有用这个,不知道zynq有什么优势?
    发表于 04-23 15:01

    STM32H7使用DMA方式读取SD卡,DMA缓冲是否只能处于AXI SRAM?

    除了512K的 AXI SRAM,还有没有其他的SRAM 区域能访问到? 因为我想这整个512K 的AXI SRAM 做其他用途,变量都定义到其它的SRAM 区域。但这样SD卡 DMA 就不能用了。
    发表于 04-18 06:00

    Xilinx高性能PCIe DMA控制器IP,8个DMA通道

    Scather Gather DMA,提供FIFO/AXI4-Stream用户接口。 基于PCI Express Integrated Block,Multi-Channel PCIe RDMA
    的头像 发表于 02-22 11:11 1481次阅读
    Xilinx高性能PCIe <b class='flag-5'>DMA</b>控制器IP,8个<b class='flag-5'>DMA</b>通道

    PCIe-AXI-Cont用户手册

    Transaction layer的所有功能特性,不仅内置DMA控制器,而且具备AXI4用户接口,提供一个高性能,易于使用,可定制化的PCIe-AXI互连解决方案,同时适用于ASIC和FPGA。
    发表于 02-22 09:15 3次下载

    PCIe控制器(FPGA或ASIC),PCIe-AXI-Controller

    Transaction Layer的所有功能特性,不仅内置DMA控制器,而且具备AXI4用户接口,提供一个高性能,易于使用,可定制化的PCIe-AXI互连解决方案,同时适用于ASIC和FPGA。
    的头像 发表于 02-21 15:15 943次阅读
    PCIe控制器(FPGA或ASIC),PCIe-<b class='flag-5'>AXI</b>-Controller

    漫谈AMBA总线-AXI4协议的基本介绍

    本文主要集中在AMBA协议中的AXI4协议。之所以选择AXI4作为讲解,是因为这个协议在SoC、IC设计中应用比较广泛。
    发表于 01-17 12:21 2424次阅读
    漫谈AMBA总线-<b class='flag-5'>AXI</b>4协议的基本介绍