0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Linux网络子系统的DMA机制是如何的实现的

Linux阅码场 来源:Linuxer 2020-06-03 16:05 次阅读

我们先从计算机组成原理的层面介绍DMA,再简单介绍Linux网络子系统的DMA机制是如何的实现的。

一、计算机组成原理中的DMA

以往的I/O设备和主存交换信息都要经过CPU的操作。不论是最早的轮询方式,还是我们学过的中断方式。虽然中断方式相比轮询方式已经节省了大量的CPU资源。但是在处理大量的数据时,DMA相比中断方式进一步解放了CPU。

DMA就是Direct Memory Access,意思是I/O设备直接存储器访问,几乎不消耗CPU的资源。在I/O设备和主存传递数据的时候,CPU可以处理其他事。

1. I/O设备与主存信息传送的控制方式

I/O设备与主存信息传送的控制方式分为程序轮询、中断、DMA、RDMA等。

先用“图1”大体上说明几种控制方式的区别,其中黄线代表程序轮询方式,绿线代表中断方式,红线代表DMA方式,黑线代表RDMA方式,蓝线代表公用的线。可以看出DMA方式与程序轮询方式还有中断方式的区别是传输数据跳过了CPU,直接和主存交流。

“图1”中的“接口”既包括实现某一功能的硬件电路,也包括相应的控制软件,如 “DMA接口” 就是一些实现DMA机制的硬件电路和相应的控制软件。

“DMA接口”有时也叫做“DMA控制器”(DMAC)。

图1

上周分享“图1”时,刘老师说在DMA方式下, DMA控制器(即DMA接口)也是需要和CPU交流的,但是图中没有显示DMA控制器与CPU交流信息。但是这张图我是按照哈工大刘宏伟老师的《计算机组成原理》第五章的内容画出的,应该是不会有问题的。查找了相关资料,觉得两个刘老师都没有错,因为这张图强调的是数据的走向,即这里的线仅是数据线。如果要严格一点,把控制线和地址线也画出来,将是“图2”这个样子:

图2

这里新增了中断方式的地址线和控制线、DMA方式的地址线和控制线。(“图2”也是自己绘制,其理论依据参考“图3”,这里不对“图3”进行具体分析,因为涉及底层的硬件知识)

“图2”对“图1”的数据线加粗,新增细实线表示地址线,细虚线表示控制线。可以看出在中断方式下,无论是传输数据、地址还是控制信息,都要经过CPU,即都要在CPU的寄存器中暂存一下,都要浪费CPU的资源;但是在DMA方式下,传输数据和地址时,I/O设备可以通过“DMA接口”直接与主存交流,只有传输控制信息时,才需要用到CPU。而传输控制信息占用的时间是极小的,可以忽略不计,所以可以认为DMA方式完全没有占用CPU资源,这等价于I/O设备和CPU可以实现真正的并行工作,这比中断方式下的并行程度要更高很多。

图3

2. 三种方式的CPU工作效率比较

在I/O准备阶段,程序轮询方式的CPU一直在查询等待,而中断方式的CPU可以继续执行现行程序,但是当I/O准备就绪,设备向CPU发出中断请求,CPU响应以实现数据的传输,这个过程会占用CPU一段时间,而且这段时间比使用程序轮询方式的CPU传输数据的时间还要长,因为CPU除了传输数据还要做一些准备工作,如把CPU寄存器中的数据都转移到栈中。

但是DMA方式不一样,当I/O准备就绪,设备向CPU发出DMA请求,CPU响应请求,关闭对主存的控制器,只关闭一个或者几个存取周期,在这一小段时间内,主存和设备完成数据交换。而且在这一小段时间内,CPU并不是什么都不能做,虽然CPU不能访问主存,即不能取指令,但是CPU的cache中已经保存了一些指令,CPU可以先执行这些指令,只要这些指令不涉及访存,CPU和设备还是并行执行。数据传输完成后,DMA接口向CPU发出中断请求,让CPU做后续处理。大家可能会奇怪DMA接口为什么也能发出中断请求,其实DMA接口内有一个中断机构,见“图3”,DMA威廉希尔官方网站 其实是建立在中断威廉希尔官方网站 之上的,它包含了中断威廉希尔官方网站 。

总之,在同样的时间内,DMA方式下CPU执行现行程序的时间最长,即CPU的效率最高。

二、Linux网络子系统中DMA机制的实现

1. DMA机制在TCP/IP协议模型中的位置

网卡明显是一个数据流量特别大的地方,所以特别需要DMA方式和主存交换数据。

主存的内核空间中为接收和发送数据分别建立了两个环形缓冲区(Ring Buffer)。分别叫接受环形缓冲区(Receive Ring Buffer)和发送环形缓冲区(Send Ring Buffer),通常也叫DMA环形缓冲区。

下图可以看到DMA机制位于TCP/IP协议模型中的位置数据链路层。

网卡通过DMA方式将数据发送到Receive Ring Buffer,然后Receive Ring Buffer把数据包传给IP协议所在的网络层,然后再由路由机制传给TCP协议所在的传输层,最终传给用户进程所在的应用层。下一节在数据链路层上分析具体分析网卡是如何处理数据包的。

2. 数据链路层上网卡对数据包的处理

DMA 环形缓冲区建立在与处理器共享的内存中。每一个输入数据包被放置在环形缓冲区中下一个可用缓冲区,然后发出中断。接着驱动程序将网络数据包传给内核的其它部分处理,并在环形缓冲区中放置一个新的 DMA 缓冲区。

驱动程序在初始化时分配DMA缓冲区,并使用驱动程序直到停止运行。

准备工作:

系统启动时网卡(NIC)进行初始化,在内存中腾出空间给Ring Buffer。Ring Buffer队列每个中的每个元素Packet Descriptor指向一个sk_buff,状态均为ready。

上图中虚线步骤的解释:

1.DMA 接口将网卡(NIC)接收的数据包(packet)逐个写入 sk_buff ,被写入数据的 sk_buff 变为 used 状态。一个数据包可能占用多个 sk_buff , sk_buff读写顺序遵循先入先出(FIFO)原则。

2.DMA 写完数据之后,网卡(NIC)向网卡中断控制器(NIC Interrupt Handler)触发硬件中断请求。

3.NIC driver 注册 poll 函数。

4.poll 函数对数据进行检查,例如将几个 sk_buff 合并,因为可能同一个数据可能被分散放在多个 sk_buff 中。

5.poll 函数将 sk_buff 交付上层网络栈处理。

后续处理:

poll 函数清理 sk_buff,清理 Ring Buffer 上的 Descriptor 将其指向新分配的 sk_buff 并将状态设置为 ready。

3.源码分析具体网卡(4.19内核)

Intel的千兆以太网卡e1000使用非常广泛,我虚拟机上的网卡就是它。

这里就以该网卡的驱动程序为例,初步分析它是怎么建立DMA机制的。

源码目录及文件:

内核模块插入函数在e1000_main.c文件中,它是加载驱动程序时调用的第一个函数。

/** * e1000_init_module - Driver Registration Routine * * e1000_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init e1000_init_module(void) { int ret; pr_info("%s - version %s ", e1000_driver_string, e1000_driver_version); pr_info("%s ", e1000_copyright); ret = pci_register_driver(&e1000_driver); if (copybreak != COPYBREAK_DEFAULT) { if (copybreak == 0) pr_info("copybreak disabled "); else pr_info("copybreak enabled for " "packets <= %u bytes ", copybreak); } return ret; } module_init(e1000_init_module);

该函数所做的只是向PCI子系统注册,这样CPU就可以访问网卡了,因为CPU和网卡是通过PCI总线相连的。

具体做法是,在第230行,通过pci_register_driver()函数将e1000_driver这个驱动程序注册到PCI子系统。

e1000_driver是struct pci_driver类型的结构体,

static struct pci_driver e1000_driver = { .name = e1000_driver_name, .id_table = e1000_pci_tbl, .probe = e1000_probe, .remove = e1000_remove, #ifdef CONFIG_PM /* Power Management Hooks */ .suspend = e1000_suspend, .resume = e1000_resume, #endif .shutdown = e1000_shutdown, .err_handler = &e1000_err_handler };

e1000_driver```里面初始化了设备的名字为“e1000”,

还定义了一些操作,如插入新设备、移除设备等,还包括电源管理相关的暂停操作和唤醒操作。下面是struct pci_driver一些主要的域。

对该驱动程序稍微了解后,先跳过其他部分,直接看DMA相关代码。在e1000_probe函数,即“插入新设备”函数中,下面这段代码先对DMA缓冲区的大小进行检查

如果是64位DMA地址,则把pci_using_dac标记为1,表示可以使用64位硬件,挂起32位的硬件;如果是32位DMA地址,则使用32位硬件;若不是64位也不是32位,则报错“没有可用的DMA配置,中止程序”。

/* there is a workaround being applied below that limits * 64-bit DMA addresses to 64-bit hardware. There are some * 32-bit adapters that Tx hang when given 64-bit DMA addresses */ pci_using_dac = 0; if ((hw->bus_type == e1000_bus_type_pcix) && !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { pci_using_dac = 1; } else { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { pr_err("No usable DMA config, aborting "); goto err_dma; } }

其中的函数dma_set_mask_and_coherent()用于对dma_mask和coherent_dma_mask赋值。

dma_mask表示的是该设备通过DMA方式可寻址的物理地址范围,coherent_dma_mask表示所有设备通过DMA方式可寻址的公共的物理地址范围,

因为不是所有的硬件设备都能够支持64bit的地址宽度。

/include/linux/dma-mapping.h

/* * Set both the DMA mask and the coherent DMA mask to the same thing. * Note that we don't check the return value from dma_set_coherent_mask() * as the DMA API guarantees that the coherent DMA mask can be set to * the same or smaller than the streaming DMA mask. */ static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) { int rc = dma_set_mask(dev, mask); if (rc == 0) dma_set_coherent_mask(dev, mask); return rc; }

rc==0表示该设备的dma_mask赋值成功,所以可以接着对coherent_dma_mask赋同样的值。

继续阅读e1000_probe函数,

if (pci_using_dac) { netdev->features |= NETIF_F_HIGHDMA; netdev->vlan_features |= NETIF_F_HIGHDMA; }

如果pci_using_dac标记为1,则当前网络设备的features域(表示当前活动的设备功能)和vlan_features域(表示VLAN设备可继承的功能)都赋值为NETIF_F_HIGHDMA,NETIF_F_HIGHDMA表示当前设备可以通过DMA通道访问到高地址的内存。

因为前面分析过,pci_using_dac标记为1时,当前设备是64位的。e1000_probe函数完成了对设备的基本初始化,接下来看如何初始化接收环形缓冲区。

/** * e1000_setup_rx_resources - allocate Rx resources (Descriptors) * @adapter: board private structure * @rxdr: rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ static int e1000_setup_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rxdr) { ''''''' rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, GFP_KERNEL); '''''' memset(rxdr->desc, 0, rxdr->size); rxdr->next_to_clean = 0; rxdr->next_to_use = 0; rxdr->rx_skb_top = NULL; return 0; }

这里dma_alloc_coherent()的作用是申请一块DMA可使用的内存,它的返回值是这块内存的虚拟地址,赋值给rxdr->desc。其实这个函数还隐式的返回了物理地址,物理地址存在第三个参数中。指针rxdr指向的是struct e1000_rx_ring这个结构体,该结构体就是接收环形缓冲区。

若成功申请到DMA内存,则用memset()函数把申请的内存清零,rxdr的其他域也清零。

对于现在的多核CPU,每个CPU都有自己的接收环形缓冲区,e1000_setup_all_rx_resources()中调用e1000_setup_rx_resources(),初始化所有的接收环形缓冲区。

int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_rx_queues; i++) { err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); if (err) { e_err(probe, "Allocation for Rx Queue %u failed ", i); for (i-- ; i >= 0; i--) e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); break; } } return err; }

e1000_setup_all_rx_resources()由e1000_open()调用,也就是说只要打开该网络设备,接收和发送环形缓冲区就会建立好。

int e1000_open(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int err; /* disallow open during test */ if (test_bit(__E1000_TESTING, &adapter->flags)) return -EBUSY; netif_carrier_off(netdev); /* allocate transmit descriptors */ err = e1000_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = e1000_setup_all_rx_resources(adapter); if (err) goto err_setup_rx;

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 存储器
    +关注

    关注

    38

    文章

    7492

    浏览量

    163836
  • Linux
    +关注

    关注

    87

    文章

    11304

    浏览量

    209503
  • dma
    dma
    +关注

    关注

    3

    文章

    561

    浏览量

    100586

原文标题:LINUX网络子系统中DMA机制的实现

文章出处:【微信号:LinuxDev,微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    深入探讨Linux系统中的动态链接库机制

    本文将深入探讨Linux系统中的动态链接库机制,这其中包括但不限于全局符号介入、延迟绑定以及地址无关代码等内容。 引言 在软件开发过程中,动态库链接问题时常出现,这可能导致符号冲突,从而引起程序运行
    的头像 发表于 12-18 10:06 109次阅读
    深入探讨<b class='flag-5'>Linux</b><b class='flag-5'>系统</b>中的动态链接库<b class='flag-5'>机制</b>

    DMA是什么?详细介绍

    DMA(Direct Memory Access)是一种允许某些硬件子系统直接访问系统内存的威廉希尔官方网站 ,而无需中央处理单元(CPU)的介入。这种威廉希尔官方网站 可以显著提高数据传输速率,减轻CPU的负担,并提高整体
    的头像 发表于 11-11 10:49 5486次阅读

    使用bq4845实现低成本RTC/NVSRAM子系统

    电子发烧友网站提供《使用bq4845实现低成本RTC/NVSRAM子系统.pdf》资料免费下载
    发表于 10-24 09:47 0次下载
    使用bq4845<b class='flag-5'>实现</b>低成本RTC/NVSRAM<b class='flag-5'>子系统</b>

    使用bq4845实现低成本RTC/NVSRAM子系统

    电子发烧友网站提供《使用bq4845实现低成本RTC/NVSRAM子系统.pdf》资料免费下载
    发表于 10-24 09:46 0次下载
    使用bq4845<b class='flag-5'>实现</b>低成本RTC/NVSRAM<b class='flag-5'>子系统</b>

    详解linux内核的uevent机制

    linux内核中,uevent机制是一种内核和用户空间通信的机制,用于通知用户空间应用程序各种硬件更改或其他事件,比如插入或移除硬件设备(如USB驱动器或网络接口)。uevent表示
    的头像 发表于 09-29 17:01 692次阅读

    深度解析linux时钟子系统

    linux内核中实现了一个CLK子系统,用于对上层提供各模块(例如需要时钟信号的外设,USB等)的时钟驱动接口,对下层提供具体SOC的时钟操作细节。
    的头像 发表于 09-29 16:46 469次阅读
    深度解析<b class='flag-5'>linux</b>时钟<b class='flag-5'>子系统</b>

    Simplelink™ Wi-Fi® CC3x3x网络子系统电源管理

    电子发烧友网站提供《Simplelink™ Wi-Fi® CC3x3x网络子系统电源管理.pdf》资料免费下载
    发表于 09-23 11:17 0次下载
    Simplelink™ Wi-Fi® CC3x3x<b class='flag-5'>网络子系统</b>电源管理

    Linux网络协议栈的实现

    网络协议栈是操作系统核心的一个重要组成部分,负责管理网络通信中的数据包处理。在 Linux 操作系统中,
    的头像 发表于 09-10 09:51 314次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>网络</b>协议栈的<b class='flag-5'>实现</b>

    Linux内核中的页面分配机制

    Linux内核中是如何分配出页面的,如果我们站在CPU的角度去看这个问题,CPU能分配出来的页面是以物理页面为单位的。也就是我们计算机中常讲的分页机制。本文就看下Linux内核是如何管理,释放和分配这些物理页面的。
    的头像 发表于 08-07 15:51 291次阅读
    <b class='flag-5'>Linux</b>内核中的页面分配<b class='flag-5'>机制</b>

    linux--LED子系统一文读懂

    Linux内核中,LED子系统扮演着控制LED灯的核心角色,它通过一套规范化的驱动架构,简化了LED驱动程序的开发流程,让开发者能够更专注于功能实现而非硬件层面的复杂性。
    的头像 发表于 08-02 16:09 2543次阅读
    <b class='flag-5'>linux</b>--LED<b class='flag-5'>子系统</b>一文读懂

    Linux DMA子系统驱动开发

    Streaming DMA在访问内存地址时经过cache,是non-coherence设备,通常采用streaming mapping的API进行内存申请,在单次DMA传输时进行map,在传输完成后进行unmap;
    发表于 04-07 14:38 889次阅读
    <b class='flag-5'>Linux</b> <b class='flag-5'>DMA</b><b class='flag-5'>子系统</b>驱动开发

    8路SDI/HDMI/MIPI/PCIe-DMA音视频采集,V4L2驱动应用介绍

    ,在上位机可以使用标准的Linux V4L2视频驱动,实现多路视频信号的采集和显示工作。2 子系统结构 3功能特性1.支持多种视频接口:SDI、Display Port(DP)、HDMI、DVI、VGA
    发表于 03-13 13:59

    一文解析谷歌Falcon以太网硬件传输协议

    基于微内核的网络子系统,可以通过模块进行扩展,通过模块可以添加高级功能,例如网络虚拟化、流量限制和消息传递功能。
    发表于 03-06 11:37 1930次阅读
    一文解析谷歌Falcon以太网硬件传输协议

    如何解决Linux系统中的网络连接问题?

    如何解决Linux系统中的网络连接问题? Linux系统中的网络连接问题是常见的威廉希尔官方网站 难题之一,通
    的头像 发表于 01-12 15:17 998次阅读

    dma和通道威廉希尔官方网站 的区别

    DMA(Direct Memory Access)和通道威廉希尔官方网站 是计算机系统中用来优化数据传输和处理的重要威廉希尔官方网站 。尽管它们都与数据传输相关,但它们在实现方法、特点和应用场景等方面存在一些重要的区别
    的头像 发表于 01-04 14:31 2596次阅读