(文章来源:EEWORLD)
越来越多的工业系统采用以太网连接来解决制造商面临的工业4.0和智能工厂通信关键挑战,包括数据集成、同步、终端连接和系统互操作性挑战。以太网互联工厂通过实现信息威廉希尔官方网站
(IT)与操作威廉希尔官方网站
(OT)网络之间的连接,可提高生产率,同时提高生产的灵活性和可扩展性。这样,使用一个支持时限通信的无缝、安全的高带宽网络便可监控工厂的所有区域。
规模计算和可靠的通信基础设施是互联工厂的命脉。当今的网络面临着流量负载不断增长以及众多协议之间互操作性的挑战,这些协议需要使用复杂且耗电的网关来转换整个工厂的流量。通过向工厂边缘终端无缝交付关键的确定性性能,工业以太网可解决同一网络中的这些互操作性问题。过去一直缺乏专为可靠的工业环境设计的适用以太网物理层(PHY)。长期以来,工业通信设备的设计人员不得不使用针对大众市场开发的消费级标准以太网PHY。在工业4.0时代,终端节点的数量正在加速增长,确定性对于实现互联工厂极其重要,因此增强的工业级工业以太网PHY至关重要。
由于以太网是受到广泛支持的、可扩展、灵活的高带宽通信解决方案,所以一直以来都是IT领域的通信之选。此外,它还具有IEEE标准带来的互操作性优势。然而,实现IT和OT网络之间的连接以及基于以太网威廉希尔官方网站 的无缝连接面临着一个关键挑战,那就是如何在要求时限连接的恶劣工业环境下进行部署。
如图显示了智能工厂中基于工业以太网连接的互联移动应用。多轴同步和精密运动控制对于在智能工厂中实现高质量生产和加工至关重要。随着对生产能力和输出质量的要求越来越高,伺服电机驱动器也需要更快的响应时间和更高的驱动精度。系统性能提高要求终端设备中使用的伺服电机轴更紧密地同步。实时100 Mb以太网广泛用于当今的运动控制系统。但是,同步仅涉及网络主机和从机之间的数据通信。
网络需要支持跨网络边界同步到应用,从低于1 μs的时间到伺服电机控制内的PWM输出。这提高了多轴应用的加工和生产精度,如采用更高数据速率的千兆工业以太网和IEEE 802.1时间敏感网络(TSN)的机器人和数控机床。利用实时工业以太网协议,所有设备均可连接到一个高带宽聚合网络,以实现边缘到云连接。
在工业环境中,部署以太网的网络安装人员面临的主要挑战就是稳健性和较高的环境温度。较长的电缆敷设路径周围存在来自电机和生产设备的高压瞬变,从而可能会损坏数据和设备。为成功部署工业以太网(如图1所示),需要一种增强型以太网PHY威廉希尔官方网站 ,要求性能稳定可靠,低功耗、低延迟,采用小型封装,并且可以在嘈杂的高温环境下工作。本文将讨论在互联工厂中部署以太网PHY解决方案所面临的挑战。
工业以太网PHY是一种物理层收发器器件,根据OSI网络模式收发以太网帧。在OSI模式中,以太网覆盖第1层(物理层)和第2层(数据链路层)的一部分,并由IEEE 802.3标准定义。物理层指定电信号类型、信号速度、介质和网络拓扑。它实施1000BASE-T (1000 Mbps)、100BASE-TX(100 Mbps,铜缆)和10BASE-T (10 Mb)标准的以太网物理层部分。
数据链路层指定如何通过介质进行通信,以及传输和接收消息的帧结构。这仅仅意味着位如何从电线上分离出来并进入位排列,以便从位流中提取数据。对于以太网,这称为介质访问控制(MAC),将集成至主机处理器或以太网交换机中。例如,fido5100和fido5200这两款ADI嵌入式、双端口工业以太网嵌入式交换机,用于支持多协议、实时工业以太网设备连接的第2层连接。
(责任编辑:fqj)
-
物理层
+关注
关注
1文章
152浏览量
34407 -
工业以太网
+关注
关注
10文章
621浏览量
42349
发布评论请先 登录
相关推荐
评论