0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能和人类智能的十个不同之处

汽车玩家 来源:CDA数据分析师 作者:CDA数据分析师 2020-05-04 09:10 次阅读

人工智能和人类智能究竟有何不同之处呢?在本文中Sabine Hossenfelder 就从十个方面分析了这两者间的不同。

今天我想讲讲人工智能有何智能之处。

当然显而易见的是,人的大脑是有温度且不确定的,而计算机不是。但是更重要的是,人类智能和人工智能之间存在结构性差异。这我将在之后讲到。

在我们开始之前,我要简单的讲讲"人工智能"指的是什么。

如今所谓的"人工智能"其实是通过神经网络实现的。

神经网络是一种计算机算法,用来interwetten与威廉的赔率体系 人脑的特定功能。当中包含虚拟的"神经元" 这些神经元排列在"层"中,并且互相连接。神经元传递信息从而进行计算。就像人脑中的神经元传递信息,并进行计算一样。

在神经网络中,神经元只是代码中的数字,通常它们的值在0到1之间。神经元之间的连接也有与之相关的数字,它们被称为"权重"。这些权重告诉你,来自其中一层的信息对下一层有多大的影响。神经元的值以及连接的权重本质上是网络中的自由参数

通过训练神经网络,你想找到那些使某个函数最小化的参数值,这称为"损失函数"。这是神经网络要解决的优化问题。

在优化中,神经网络的魔力是通过所谓的反向传播实现的。反向传播是指,如果神经网络给出的结果不是特别好,你可以回溯并改变神经元的权重和连接。神经网络就是这样从错误中"学习"。

说到这里,下面让我们进入人工智能和人类智能之间的关键区别。

01

形式和功能

神经网络是运行在计算机上的软件,人工智能的"神经元"没有物理实体。它们以位数和字符串的形式编码在硬盘或硅芯片上,它们的物理结构和真正的神经元一点也不像。相反,在人脑中形式和功能是同时存在的。

02

大小

人类大脑大约有1000亿个神经元,目前的神经网络通常有几百个左右。

03

连接

在神经网络中,每一层通常与上一层和下一层完全连接。但人脑并没有所谓的层,相反,它依赖于许多预定义的结构。并不是人类大脑的所有区域都是同样连接的,区域是专门用于特定目的的。

04

能量消耗

人脑在能量消耗方面,比现存的任何人工智能都更为节能。人脑大约耗费20瓦能量,这与现在标准笔记本电脑耗费的差不多。但有了这些能量,大脑处理的神经元数量多一百万倍。

05

体系

在神经网络中,这些层是整齐有序的一个接一个地处理。而另一方面,人脑会进行很多并行处理,没有任何特定的顺序。

06

激活状态

在人脑中,神经元要么是激活状态,要么非激活状态。在神经网络中,激活是由连续值模拟的。因此人造神经元可以平稳地从上到下运行,这是人脑做不到的。

07

速度

人类的大脑比任何人工智能系统都要慢得多。一台标准计算机每秒执行大约100亿次操作。另一方面,人的神经元激活频率为每秒最多一千次。

08

学习方式

神经网络通过输出来学习。如果根据损失函数,这个输出是低性能的。然后,网络通过改变神经元的权重和它们之间的连接做出反应。没有人知道人类学习的细节,但肯定不是这样的。

09

结构

神经网络每次都是从零开始的。而人脑呢? 很多结构已经连接到它的连接处,而且利用的模型,这在进化过程中被证明是有用的。

10

精度

人脑的干扰因素更多,而且不如计算机上运行的神经网络精确。这意味着大脑基本上不能运行与神经网络相同的学习机制,它可能使用完全不同的机制。

这些差异的结果是,如今的人工智能需要大量的训练,需要大量精心准备的数据。这与人脑的运行方式是很不一样的。

局限性

神经网络不会建立世界中模型,相反它们会学习对模式进行分类。这种模式识别只需要很小的变化就会失败。

一个著名的例子是,你给图片添加少量影响因素,这些因素小到肉眼无法识别。但人工智能系统可能会被骗,错认为物品A认为是物品B。

目前,神经网络也不善于从它们所学习的情况推广到另一种情况。

它们的成功很大程度上取决于定义正确的"损失函数"。如果你没有谨慎思考损失函数,你最终会优化你不想要的东西。比如本被训练以恒定的高速行驶的自动驾驶汽车,很可能变成只会原地旋转。

但是神经网络擅长于一些内容。比如对图像进行分类,或者推断出没有明显趋势的数据。

结语

也许人工智能的意义就在于不让它与人类智能太相似。

毕竟,我们拥有的最有用的机器,比如汽车或飞机,它们之所以有用正是因为没有模仿人类。相反,我们需要创造专门处理人类不擅长任务的机器。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100725
  • 人工智能
    +关注

    关注

    1791

    文章

    47221

    浏览量

    238307
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能
    发表于 11-14 16:39

    人工智能人类的影响有哪些

    人工智能(AI)作为现代科技的杰出代表,正在以前所未有的速度改变着人类的生活、工作和社会结构。这种影响是全方位的,既带来了显著的积极变化,也伴随着一系列挑战和问题。 一、积极影响 工作变革与经济增长
    的头像 发表于 10-22 17:23 1739次阅读

    未来学家展望 2025 年十大人工智能趋势

    美国《福布斯》杂志网站9月24日刊登题为《人人都必须为2025年的十大人工智能趋势做好准备》的文章,作者为未来学家伯纳德·马尔,内容编译如下:毫无疑问,人工智能仍将是2025年最受关注的威廉希尔官方网站 。从
    的头像 发表于 10-15 08:06 417次阅读
    未来学家展望 2025 年<b class='flag-5'>十大人工智能</b>趋势

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这一章详细
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    农业、环保等,为人类社会的可持续发展做出贡献。 总结 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们展示了一充满希望和机遇的未来。在这个未来中,
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    深刻认识到人工智能在推动科学进步中的核心价值。它不仅是科技进步的加速器,更是人类智慧拓展的催化剂,引领我们迈向一更加智慧、高效、可持续的科学研究新时代。
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 一、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    芯片设计的自动化水平、优化半导体制造和封测的工艺和水平、寻找新一代半导体材料等方面提供帮助。 第6章介绍了人工智能在化石能源科学研究、可再生能源科学研究、能源转型三方面的落地应用。 第7章从环境监测
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17