0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

几种常用的机器学习算法及其应用场景

倩倩 来源:天极网 2020-04-15 16:29 次阅读

诞生于1956年的人工智能,由于受到智能算法、计算速度、存储水平等因素的影响,在六十多年的发展过程中经历了多次高潮和低谷。最近几年,得益于数据量的上涨、运算力的提升,特别是机器学习新算法的出现,人工智能迎来了大爆发的时代。

提到机器学习这个词时,有些人首先想到的可能是科幻电影里的机器人。事实上,机器学习是一门多领域交叉学科,涉及概率论、统计学、算法复杂度理论等多门学科。专门研究计算机如何interwetten与威廉的赔率体系 或实现人类的学习行为,利用数据或以往的经验,以此优化计算机程序的性能标准。

根据学习任务的不同,我们可以将机器学习分为监督学习、非监督学习、强化学习三种类型,而每种类型又对应着一些算法。

各种算法以及对应的任务类型

接下来就简单介绍几种常用的机器学习算法及其应用场景,通过本篇文章大家可以对机器学习的常用算法有个常识性的认识。

一、监督学习

(1)支持向量机(Support Vector Machine,SVM):是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面。例如,在纸上有两类线性可分的点,支持向量机会寻找一条直线将这两类点区分开来,并且与这些点的距离都尽可能远。

优点:泛化错误率低,结果易解释。

缺点:对大规模训练样本难以实施,解决多分类问题存在困难,对参数调节和核函数的选择敏感。

应用场景:文本分类、人像识别、医学诊断等。

(2)决策树(Decision Tree):是一个预测模型,代表的是对象属性与对象值之间的一种映射关系。下图是如何在决策树中建模的简单示例:

优点:易于理解和解释,可以可视化分析,容易提取出规则;能够处理不相关的特征。

缺点:对缺失数据处理比较困难。

应用场景:在决策过程应用较多。

(3)朴素贝叶斯分类(Naive Bayesian classification):对于给出的待分类项,求解此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类属于哪个类别。贝叶斯公式为:p(A|B)= p(B|A)*p(A/p(B),其中P(A|B)表示后验概率,P(B|A)是似然值,P(A)是类别的先验概率,P(B)代表预测器的先验概率。

优点:在数据较少的情况下仍然有效,可以处理多类别问题。

缺点:对输入数据的准备方式较为敏感。

应用场景:文本分类、人脸识别、欺诈检测

(4)k-近邻算法(K-Nearest Neighbor,KNN):是一种基于实例的学习,采用测量不同特征值之间的距离方法进行分类。其基本思路是:给定一个训练样本集,然后输入没有标签的新数据,将新数据的每个特征与样本集中数据对应的特征进行比较,找到最邻近的k个(通常是不大于20的整数)实例,这k个实例的多数属于某个类,就把该输入实例分类到这个类中。

优点:简单、易于理解、易于实现,无需估计参数。此外,与朴素贝叶斯之类的算法比,无数据输入假定、准确度高、对异常数据值不敏感。

缺点:对于训练数据依赖程度比较大,并且缺少训练阶段,无法应对多样本。

应用场景:字符识别、文本分类、图像识别等领域。

二、非监督学习

(1)主成分分析(Principal Component Analysis,PCA):是一种统计方法。其主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。

优点:降低数据的复杂性,识别最重要的多个特征。

缺点:主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强;有可能损失有用的信息

应用场景:语音、图像、通信的分析处理。

(2)奇异值分解(Singular Value Decomposition,SVD):可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。

优点:简化数据,去除噪声点,提高算法的结果。

缺点:数据的转换可能难以理解。

应用场景:推荐系统、图片压缩等。

(3)K-均值聚类(K-Means):是一种迭代求解的聚类分析算法,采用距离作为相似性指标。其工作流程是随机确定K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。

优点:算法简单容易实现。

缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢。

应用场景:图像处理、数据分析以及市场研究等。

三、强化学习

Q-learning:是一个基于值的强化学习算法,它根据动作值函数评估应该选择哪个动作,这个函数决定了处于某一个特定状态以及在该状态下采取特定动作的奖励期望值。

优点:可以接收更广的数据范围。

缺点:缺乏通用性。

应用场景:游戏开发。

以上就是文章的全部内容,相信大家对常用的机器学习算法应该有了大致的了解。

现如今,我们越来越多地看到机器学习算法为人类带来的实际价值,如它们提供了关键的洞察力和信息来报告战略决策。可以肯定的是,随着机器学习越来越流行,未来还将出现越来越多能很好地处理任务的算法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4620

    浏览量

    93044
  • 机器学习
    +关注

    关注

    66

    文章

    8424

    浏览量

    132764
收藏 人收藏

    评论

    相关推荐

    倍频器的威廉希尔官方网站 原理和应用场景

    倍频器的输出频率,以保持与输入信号的同步。 应用场景倍频器在多个领域有着广泛的应用,以下是几个典型的应用场景: 无线通信:在无线通信系统中,倍频器常用于将低频的基带信号转换为高频的射频信号。这有助于实现
    发表于 11-29 14:49

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习
    的头像 发表于 11-15 09:19 511次阅读

    aes算法在移动应用中的应用场景

    AES算法(Advanced Encryption Standard,高级加密标准)在移动应用中的应用场景十分广泛,主要体现在以下几个方面: 1. 数据传输安全 在移动应用中,用户经常需要通过网络
    的头像 发表于 11-14 15:14 352次阅读

    常用的ADC滤波算法有哪些

    ADC(模数转换器)滤波算法在信号处理中起着至关重要的作用,它们能够帮助我们提取出有用的信号,同时滤除噪声和干扰。以下是常用的ADC滤波算法详解,这些算法各具特色,适用于不同的应
    的头像 发表于 10-08 14:35 421次阅读

    聚徽-工控机不同尺寸的使用场景

    工控机的不同尺寸确实对应着不同的使用场景。以下是一些常见的工控机尺寸及其对应的使用场景
    的头像 发表于 08-19 09:20 296次阅读

    RISC-V适合什么样的应用场景

    RISC-V作为一种开源的指令集架构(ISA),其设计哲学秉承简单、模块化和可扩展性,这使得它适用于多种应用场景。以下是RISC-V适合的一些主要应用场景: 1. 物联网(IoT) 低功耗设备
    发表于 07-29 17:16

    FPGA与MCU的应用场景

    大量计算任务,这在实时处理等应用中尤为重要。 高性能计算 FPGA在处理复杂算法和大规模数据时表现出色,特别是在人工智能(AI)和机器学习(ML)领域。它们可以加速神经网络的训练和推理过程。 所以适合
    发表于 07-29 15:45

    深度学习模型有哪些应用场景

    深度学习模型作为人工智能领域的重要分支,已经在多个应用场景中展现出其巨大的潜力和价值。这些应用不仅改变了我们的日常生活,还推动了科技进步和产业升级。以下将详细探讨深度学习模型的20个主要应用场
    的头像 发表于 07-16 18:25 2039次阅读

    机器视觉检测系统的关键威廉希尔官方网站 和应用场景

    识别与定位能力,成为当前研究的热点和应用的焦点。本文将从基本原理、关键威廉希尔官方网站 、应用场景以及未来展望四个方面,深入探讨基于深度学习机器视觉检测系统。
    的头像 发表于 07-08 10:33 1474次阅读

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器
    的头像 发表于 07-02 11:25 1131次阅读

    机器学习的经典算法与应用

    关于数据机器学习就是喂入算法和数据,让算法从数据中寻找一种相应的关系。Iris鸢尾花数据集是一个经典数据集,在统计学习
    的头像 发表于 06-27 08:27 1678次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>的经典<b class='flag-5'>算法</b>与应用

    名单公布!【书籍评测活动NO.35】如何用「时间序列与机器学习」解锁未来?

    应用,将理论基础与实践案例相结合,作者凭借扎实的数学功底及其在企业界的丰富实践经验,将机器学习与时间序列分析巧妙融合在书中。 全书书共分为8章,系统介绍时间序列的基础知识、常用预测方法
    发表于 06-25 15:00

    电石炉巡检机器人应用场景和功能

    人的应用场景广泛,涵盖了电石炉的各个关键区域。那么我们来说说电石炉巡检机器人应用场景和功能。 一、电石炉巡检机器人应用场景 1、电石炉本体巡
    的头像 发表于 04-17 17:26 433次阅读
    电石炉巡检<b class='flag-5'>机器</b>人应<b class='flag-5'>用场景</b>和功能

    NanoEdge AI的威廉希尔官方网站 原理、应用场景及优势

    能耗并提高数据安全性。本文将对 NanoEdge AI 的威廉希尔官方网站 原理、应用场景以及优势进行综述。 1、威廉希尔官方网站 原理 NanoEdge AI 的核心威廉希尔官方网站 包括边缘计算、神经网络压缩和低功耗硬件设计。边缘计算
    发表于 03-12 08:09

    AG32VF-MIPI应用场景

    MIPI接口威廉希尔官方网站 在图像和视频传输中的应用越来越广泛,应用场景也在不断拓展,而不仅限于移动设备。MIPI接口在物联网、智能家居、智能监控、智能电视、智能汽车等领域也得到广泛应用。 MIPI还可
    发表于 01-22 08:56