0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

不同角度的机器学习算法比较

汽车玩家 来源:今日头条 作者:闻数起舞 2020-05-03 18:35 次阅读

"当您改变看待事物的方式时,您看待的事物就会改变。" ―Wayne Dyer

人类发明了无数的机器学习(ML)算法。 当然,大多数时候,只有一小部分用于研究和工业。 但是,对于人类来说,理解并记住所有这些ML模型的所有细节都是有些不知所措的。 某些人可能还会误以为所有这些算法都是完全无关的。 更重要的是,当两者看起来都是有效的算法时,如何选择使用算法A而不是算法B?

本文旨在为读者提供不同角度的机器学习算法。 基于这些观点,可以基于共同的理由对算法进行比较,并且可以轻松地对其进行分析。 本文编写时考虑了两个主要的ML任务-回归和分类。

方法与目标

本质上,所有机器学习问题都是优化问题。 机器学习模型或始终需要优化的基本目标函数背后总有一种方法论。 比较算法背后的主要思想可以增强关于它们的推理。

例如,线性回归模型的目的是使预测值和实际值的平方损失最小化(均方误差,MSE),而Lasso回归的目的是通过在MSE上添加额外的正则项来限制MSE,同时限制学习参数。 防止过度拟合。

参数化

尽管没有严格定义参数模型的定义,但是这种模型分类法已广泛用于统计学习领域。 简单地说,参数模型意味着模型的参数数量是固定的,而当有更多数据可用时,非参数模型的参数数量会增加[3]。 定义参数模型的另一种方法是基于其有关数据概率分布形状的基本假设。 如果没有假设,那么它是一个非参数模型[4]。

可并行性

并行算法意味着一种算法可以在给定的时间完成多个操作。 这可以通过在不同的工作人员之间分配工作负载来完成,例如在一台或多台计算机中的处理器。 像梯度提升决策树(GBDT)这样的顺序算法很难并行化,因为下一个决策树是根据前一个决策树所犯的错误建立的。

在线和离线

在线和离线学习是指机器学习软件学习更新模型的方式。 在线学习意味着可以一次提供一个训练数据,以便在有新数据时可以立即更新参数。 但是,离线学习要求训练在新数据出现时重新开始(重新训练整个模型)以更新参数。 如果一种算法是在线算法,那将是有效的,因为生产中使用的参数可以实时更新以反映新数据的影响。

偏差方差权衡

不同的ML算法将具有不同的偏差方差权衡。 偏差误差来自模型偏向特定解决方案或假设的事实。 例如,如果线性决策边界适合非线性数据,则偏差会很大。 另一方面,方差度量的是来自模型方差的误差。 它是模型预测和期望模型预测的平均平方差[2]。

Bias-variance tradeoff, extracted from [2].

不同的模型进行不同的偏差方差折衷。 例如,朴素贝叶斯由于过于简单的假设而被认为是高偏差,低方差模型。

样品复杂度

样本复杂性衡量了训练网络以保证有效概括所需的训练示例的数量。 例如,深度神经网络具有很高的样本复杂度,因为需要大量的训练数据来训练它。

空间复杂度

空间复杂度衡量一个算法需要运行多少内存。 如果ML算法将过多的数据加载到机器的工作存储器中,则ML程序将无法成功运行。

时间复杂度

RAM模型[1]下,算法所需的"时间"通过算法的基本运算来衡量。 尽管用户和开发人员可能会更多地关注算法训练模型所需的挂钟时间,但使用标准最坏情况下的计算时间复杂度来比较模型训练所需的时间会更公平。 使用计算复杂度的好处是可以忽略诸如运行时使用的计算机功能和体系结构以及底层编程语言之类的差异,从而使用户可以专注于算法基本运算的基本差异。

请注意,在训练和测试期间,时间复杂度可能会大不相同。 例如,线性回归等参数模型可能需要较长的训练时间,但在测试期间却很有效。

参考

[1]计算的RAM模型

[2]讲座12:偏差-偏差权衡

[3] D. S. Raschka。 "参数学习算法和非参数学习算法之间有什么区别?"

[4] T. Hoskin,"参量和非参量:使术语神秘化",Mayo诊所,2012年,第1-5页。

总之,可以基于不同的标准来分析ML算法。 这些标准实际上可以帮助衡量不同ML模型的有效性和效率。

您能从其他角度比较机器学习算法吗?

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4612

    浏览量

    92890
  • 机器学习
    +关注

    关注

    66

    文章

    8418

    浏览量

    132630
收藏 人收藏

    评论

    相关推荐

    cmp在机器学习中的作用 如何使用cmp进行数据对比

    机器学习领域,"cmp"这个术语可能并不是一个常见的术语,它可能是指"比较"(comparison)的缩写。 比较机器
    的头像 发表于 12-17 09:35 184次阅读

    什么是机器学习?通过机器学习方法能解决哪些问题?

    来源:Master编程树“机器学习”最初的研究动机是让计算机系统具有人的学习能力以便实现人工智能。因为没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的
    的头像 发表于 11-16 01:07 404次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习
    的头像 发表于 11-15 09:19 454次阅读

    LSTM神经网络与其他机器学习算法比较

    随着人工智能威廉希尔官方网站 的飞速发展,机器学习算法在各个领域中扮演着越来越重要的角色。长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),因其在处理序列数据方面的优势而受到广泛关注。 LSTM
    的头像 发表于 11-13 10:17 684次阅读

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多威廉希尔官方网站 ,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2486次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    LIBS结合机器学习算法的江西名优春茶采收期鉴别

    以庐山云雾茶和狗牯脑茶的明前茶、雨前茶为对象,研究激光诱导击穿光谱结合机器学习的茶叶鉴别方法。将茶叶茶,水数据融合可有效鉴别春茶采收期,且数据融合后表现出更好的稳定性和鲁棒性,LIBS结合机器
    的头像 发表于 10-22 18:05 253次阅读
    LIBS结合<b class='flag-5'>机器</b><b class='flag-5'>学习</b><b class='flag-5'>算法</b>的江西名优春茶采收期鉴别

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习
    的头像 发表于 07-02 11:25 1039次阅读

    机器学习在数据分析中的应用

    随着大数据时代的到来,数据量的爆炸性增长对数据分析提出了更高的要求。机器学习作为一种强大的工具,通过训练模型从数据中学习规律,为企业和组织提供了更高效、更准确的数据分析能力。本文将深入探讨机器
    的头像 发表于 07-02 11:22 631次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习和深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着威廉希尔官方网站 的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1377次阅读

    机器学习的经典算法与应用

    关于数据机器学习就是喂入算法和数据,让算法从数据中寻找一种相应的关系。Iris鸢尾花数据集是一个经典数据集,在统计学习
    的头像 发表于 06-27 08:27 1657次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>的经典<b class='flag-5'>算法</b>与应用

    深入探讨机器学习的可视化威廉希尔官方网站

    机器学习可视化(简称ML可视化)一般是指通过图形或交互方式表示机器学习模型、数据及其关系的过程。目标是使理解模型的复杂算法和数据模式更容易,
    发表于 04-25 11:17 418次阅读
    深入探讨<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的可视化威廉希尔官方网站

    机器学习怎么进入人工智能

    ,人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是一类基于样本数据和模型训练来进行预测和判断的
    的头像 发表于 04-04 08:41 319次阅读

    机器学习8大调参技巧

    今天给大家一篇关于机器学习调参技巧的文章。超参数调优是机器学习例程中的基本步骤之一。该方法也称为超参数优化,需要搜索超参数的最佳配置以实现最佳性能。
    的头像 发表于 03-23 08:26 624次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>8大调参技巧

    AI算法的本质是模拟人类智能,让机器实现智能化

    电子发烧友网报道(文/李弯弯)AI算法是人工智能领域中使用的算法,用于模拟、延伸和扩展人的智能。这些算法可以通过机器学习、深度
    的头像 发表于 02-07 00:07 5795次阅读

    目前主流的深度学习算法模型和应用案例

    深度学习在科学计算中获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用不同类型的神经网络来执行特定任务。
    的头像 发表于 01-03 10:28 1958次阅读
    目前主流的深度<b class='flag-5'>学习</b><b class='flag-5'>算法</b>模型和应用案例