0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

传统AI与现代AI有什么不同

汽车玩家 来源:今日头条 作者:闻数起舞 2020-05-03 18:14 次阅读

当今的AI

毫无疑问,当今最大的流行词是人工智能或人工智能。包括Gartner,McKinsey和PWC在内的大多数著名研究组织都以惊人的统计数据和未来预测来荣耀AI的未来。这是PWC的报告(2018),其中预测到2030年,人工智能将为全球经济贡献15.7万亿美元。整体生产率和GDP将分别增长55%和14%。正如美国总统唐纳德·J·特朗普(Donald J.Trump)所签署的那样,行政命令可以迅速证明人工智能在美国内部的重要性。

"我们可以一起使用世界上最具创新性的威廉希尔官方网站 来使我们的政府更好地为美国人民服务。" Michael Kratsios美国首席威廉希尔官方网站 官

我们在日常生活中有几个例子,我们甚至没有注意到就利用人工智能。其中包括Google地图,Gmail中的智能回复(2018 +),facebook图片标记(大约2015),youtube / NetFlix视频推荐(2016+)等。还有一些惊人的新闻报道,概述了AI的重要性和影响力;就像这个(2019年)那样,诺瓦克·德约科维奇(Novak Djokovic)在温布尔登决赛中使用了AI,或者浏览此网站(于2019年推出),其中包含100%的假照片,这些人看起来像是100%真正地利用了深度神经网络深度学习)。这个清单不胜枚举。

传统AI(1950–2008年)

"人工智能"一词是1956年在达特茅斯的一次历史性会议上提出的。 在AI发展的初期,科学家和媒体大肆宣传,围绕AI突破的可能性提出了乌托邦式的主张。 一些科学家非常清楚地表明,在未来20年中,该机器将完成人类可能做的所有事情。

"机器将能够完成男人可以做的任何工作。"

1965年—赫伯特·西蒙(Herbert A.Simon)

70 years history of AI by Awais Bajwa

从那时起,人工智能的发展经历了许多起伏。 1973年,英国政府在调查后发表了一份名为Lighthill报告的报告,并没收了许多主要的AI研究型大学的资金。 当时最著名的AI方法是专家系统和模糊逻辑,其中Prolog和Lisp是C / C中编程语言的首选。 专家系统的第一个重大突破发生在80年代,并且引入了第一个杰出的专家系统SID。 后来,在AI领域遇到了其他挫折,随后是IBM的又一次突破,当时IBM的超级计算机Deep Blue在1997年在纽约市击败了世界冠军Garry Kasparov。 ,IBM声称没有在Deep Blue中使用AI,这引起了一些有趣的讨论。

请注意,所有的突破都发生在最近的8-10年中。 作为深度学习/神经网络的核心的反向传播算法于1986年首次提出。问题是"为什么在过去的8-10年(即2009-2019年),当AI出现了70多年了? "。

为了获得答案,让我们跳入当今的"现代AI"时代。

现代AI(2008)

“数据科学”一词由Linkedin和Facebook的两个数据团队负责人于2008年初提出。 (DJ Patel和Jeff Hammerbacher)。计算机科学的这一新领域引入了利用统计,概率,线性代数和多元微积分的高级分析。 2012年下半年,真正的突破发生在人工智能上,当时在具有历史意义的ImageNet竞赛中,基于CNN的提交文件AlexNet超越了所有其他竞争对手,并且错误率比第二名低10.8%。那是现代AI的出现,并且被认为是AI世界新繁荣的触发。获胜的主要原因之一是利用图形处理单元(GPU)训练神经网络体系结构。 2015年下半年,Facebook的AI负责人Yann LeCun与其他“ AI教父”一起努力推动深度学习及其可能性。如今,许多云供应商都在为“现代AI”提供基于云的GPU,而采用它们从来就不是一种选择。 从CPU切换到GPU,GPU确实改变了游戏。

从CPU切换到GPU,GPU确实改变了游戏。 它彻底改变了威廉希尔官方网站 ,重新定义了计算能力和并行处理。 由于高级数学计算,人工智能需要高速计算能力。 特别是因为过去十年中生成的数据量呈指数级增长(来源)。

因此,全世界的AI研究呈指数增长,在撰写本文时,AI研究论文的数量约为100 /天。

因此,我们对之前的问题有一个答案:

"为什么在过去的8-10年(即2009-2019年)中,人工智能已经存在了70多年? "。

答:数据的增长迅猛,处理" GPU"的速度更快且成本更低,并且AI研究发展迅速。

传统AI与现代AI有什么不同

source

未来的人工智能浪潮

Google非常友善,可以让员工将20%的时间分配给他们的野心和有趣的项目。 2015年,Google搜索过滤器小组的成员Alexander Mordvintsev开发了一种神经网络程序,将其作为一种爱好,用梦幻般的致幻外观震惊了他的同事。这个项目被Google命名为Deep Dream。该项目是在训练神经网络并大规模使用激活功能时进行实验的结果。但是,即使到了今天,人工智能的最大谜团之一是,我们对人工智能在内部做出决策的精确度或神经网络如何以反向概率学习的认识尚无真正的了解。用外行人的话来说,人工智能的实际推理或对决策的偏见是一个谜,它被称为“人工智能黑匣子”。

XAI

人工智能工作的新潮流之一是打破黑匣子,并获得决策过程的逻辑解释。 这个新概念现在称为"可解释的人工智能"或XAI。 一旦实现了XAI,AI社区将可以使用新一轮的AI。 可能会有更强大和更具弹性的AI框架,包括对AI流程和未来增长模式的可预测理解。

小数据

深度学习领域正在发生重大的AI突破,而在深度学习中,神经网络非常渴望海量数据。 例如,要训练模型来识别猫,则需要提供大约10万只猫/非猫的图像,以获得近似等于人眼的猫的完美分类。 呈指数级增长的另一个研究领域是用更少的数据集快速学习并利用概率框架。 这个新概念称为"小数据"。 研究领域是"如何用较少的数据训练您的机器学习模型并获得准确的预测。" 这在AI领域是巨大的机会,并且有望随着未来的创新前景而爆炸。

未来AI研究的另外两个领域是在"无监督学习"和"强化学习"领域取得重大进展。 在这里我们可以通过转移学习来利用可用的知识,并通过一些增强学习(例如通过GAN网络模型)来生成人工创建的采样数据。

重要要点

从理论上讲,传统AI已有70年历史,但在过去8-10年中(Moden AI)有了显着发展。 这些现代AI的突破通过云上的"现收现付"模型推动了数据的指数增长,快速研究和廉价的计算能力。

未来的人工智能浪潮将打破"人工智能黑匣子",并了解机器学习模型做出的决策和预测的原因。 未来AI浪潮的另一个主要领域是向有限的数据集或"小数据"学习。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    31028

    浏览量

    269382
  • 深度学习
    +关注

    关注

    73

    文章

    5506

    浏览量

    121258
收藏 人收藏

    评论

    相关推荐

    HarmonyOS NEXT 应用开发练习:AI智能对话框

    一、练习内容 在这个HarmonyOS NEXT原生应用DEMO中,我们将使用ArkTS开发语言创建一个功能更为丰富的AI智能对话框。这个对话框不仅具备基本的聊天功能,还能展示图片消息、表情符号,并
    发表于 01-03 11:29

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    传统学科界限,使得科学家们能够从更加全面和深入的角度理解生命的奥秘。同时,AI威廉希尔官方网站 的引入也催生了一种全新的科学研究范式,即数据驱动的研究范式,这种范式强调从大量数据中提取有价值的信息,从而推动科学研究
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的威廉希尔官方网站 支撑学习心得

    for Science的威廉希尔官方网站 支撑”的学习心得,可以从以下几个方面进行归纳和总结: 1. 威廉希尔官方网站 基础的深入理解 在阅读第二章的过程中,我对于AI for Science所需的威廉希尔官方网站 基础了更加深入的理解。这一章详细阐述了
    发表于 10-14 09:16

    AI降噪算法的USB麦克风降噪模组

    AI
    深圳德宇科技有限公司
    发布于 :2024年09月26日 11:34:09

    AI调试工具

    APIAI
    草帽王路飞
    发布于 :2024年09月02日 11:31:57

    云开发AI助手

    AI
    草帽王路飞
    发布于 :2024年07月22日 14:41:54

    视频3--场景自动化AI助手

    AI
    草帽王路飞
    发布于 :2024年07月22日 11:16:13

    视频2--场景自动化AI助手

    AI
    草帽王路飞
    发布于 :2024年07月22日 11:15:34

    ai大模型和传统ai的区别在哪?

    AI大模型和传统AI的区别主要体现在以下几个方面: 数据量和训练规模 AI大模型通常需要大量的数据进行训练,以获得更好的性能。相比之下,传统
    的头像 发表于 07-16 10:06 1407次阅读

    AI大模型与传统AI的区别

    AI大模型(如LLM,即大型语言模型)与传统AI在多个方面存在显著的区别。以下将从威廉希尔官方网站 层面、应用场景、性能表现、计算资源和成本、以及发展趋势和挑战等角度进行详细阐述。
    的头像 发表于 07-15 11:37 2843次阅读

    生成式AI传统AI的主要区别

    随着人工智能威廉希尔官方网站 的飞速发展,生成式AI(Generative AI)逐渐崭露头角,并与传统AI(也称为“规则驱动的AI”或“判别式
    的头像 发表于 07-05 17:35 2762次阅读

    AI芯片哪里买?

    AI芯片
    芯广场
    发布于 :2024年05月31日 16:58:19

    使用cube-AI分析模型时报错的原因哪些?

    使用cube-AI分析模型时报错,该模型是pytorch的cnn转化成onnx ``` Neural Network Tools for STM32AI v1.7.0 (STM.ai v8.0.0-19389) INTER
    发表于 03-14 07:09

    ai_reloc_network.h引入后,ai_datatypes_format.h和formats_list.h报错的原因?

    当准备使用神经网络的relocatable方式,将ai_reloc_network.h头文件加入程序编译后,ai_datatypes_format.h在cubeIDE和Keilc里分别报如下错误
    发表于 03-14 06:23

    NanoEdge AI的威廉希尔官方网站 原理、应用场景及优势

    NanoEdge AI 是一种基于边缘计算的人工智能威廉希尔官方网站 ,旨在将人工智能算法应用于物联网(IoT)设备和传感器。这种威廉希尔官方网站 的核心思想是将数据处理和分析从云端转移到设备本身,从而减少数据传输延迟、降低
    发表于 03-12 08:09