石墨负极的理论比容量为372mAh/g,已经无法满足新一代高比能锂离子电池的设计需求,Si基负极材料理论容量可达4200mAh/g以上,嵌锂电位与石墨材料接近,是一种理想的负极材料。但是硅负极材料在嵌锂的过程中体积膨胀可达300%以上,这不仅会造成颗粒自身的粉化和破碎,还会造成电极结构的破坏,严重影响锂离子电池的循环寿命。
近日,韩国汉阳大学的Dongsoo Lee(第一作者)和Makio Naito(通讯作者),Ungyu Paik(通讯作者)等人通过在纳米Si颗粒与石墨片喷雾造粒的方式,制备了纳米Si/石墨片复合材料,有效地抑制了Si材料的体积膨胀,同时通过在其表面包覆一层无定形碳的方式,有效降低了材料的比表面积,使得该材料的首次效率达到85%,该材料表现出了优异的循环稳定性,在1C倍率下循环500次后容量保持率仍然可达71%。
下图展示了该复合Si基材料的制备过程,首先将纳米Si颗粒与石墨片均匀的混合,然后采用喷雾干燥的方法形成均匀的Si/石墨片颗粒(SGG),这种SGG颗粒比表面积过大,同时机械强度也较差,因此库伦效率和循环性能都比较差。为了解决这一问题,作者通过机械混合的方式将沥青均匀地涂布在SGG颗粒的表面,并在800℃的温度下对其进行了处理,从而在SGG颗粒的表面均匀的形成了一层无定形石墨材料,降低了Si材料与电解液的接触面积,并提高了SGG材料的机械强度,从而显著改善了SGG材料的电化学性能。
SGG颗粒的首次脱锂容量为1650mAh/g,首次库伦效率为79%,而无定形碳包覆的C@SGG颗粒的首次脱锂容量为1150mAh/g,但是首次效率提升到了85%,这主要是因为无定形碳的包覆显著降低了材料的比表面积,从而减少了SEI膜生成的数量,进而提升了首次充放电库伦效率。在循环测试中C@SGG颗粒表现出了显著的优势,在前20次循环中SGG颗粒容量就出现了严重的衰降,但是C@SGG颗粒在前50次循环中容量只出现了轻微的衰降。
为了验证该材料在实际应用中的效果,作者分别采用10%的SGG或C@SGG与90%石墨进行混合作为负极,LCO为正极,制作了软包电池,从下图3c可以看到C@SGG与石墨混合的电极首次效率达到了90%,与石墨负极的电池基本相当。从下图d的循环性能可以看到,C@SGG与石墨混合的电极表现出了优异的循环稳定性,在1C倍率下循环100次容量保持率为83%,循环500次后容量保持率达到了71%。而石墨负极在循环100次后容量保持率为93%,略高于C@SGG材料,但是在500次循环后石墨材料的容量保持率仅为66%,这要明显低于C@SGG材料。
添加10%的C@SGG材料的电池具有更小的SEI膜阻抗和电荷交换阻抗,根据交流阻抗数据计算的Li+扩散系数也显示添加10%的C@SGG材料的电极扩散系数为7.803×10-14,要明显高于石墨电极的1.115×10-14,C@SGG材料的这些特性使得其倍率性能要好于石墨材料。
体积膨胀是硅碳材料在应用中面临的最大障碍,而在C@SGG材料中,颗粒内部存在着较多的自由空间,因此能够有效的吸收纳米Si颗粒在充电过程中产生的体积膨胀,有效的减少了硅材料体积膨胀对于电极结构的破坏。
在首次0.1C充电的过程中电池体积膨胀为12.7%,在第三次1C充电后电池体积膨胀为14.5%,在整个循环过程中石墨负极的电池体积膨胀比较稳定,在50次循环后,放电状态体积膨胀5.6%。添加10%的C@SGG材料的电池首次0.1C充电后体积膨胀为13.9%,在第三次1C充电后电池体积膨胀16%,在经过50次循环后电池体积膨胀为6.7%,与采用纯石墨负极的电池比较接近。但是当C@SGG材料添加量达到20%后,电池的体积膨胀显著增加,在首次0.1C充电后体积膨胀达到了23%,并且在后续的循环过程中电池的体积膨胀快速增加。
Dongsoo Lee开的C@SGG材料巧妙的利用了纳米硅/石墨片颗粒中间的孔隙,吸收了纳米Si材料在充放电过程中的体积膨胀,减少了Si材料体积膨胀对于电极结构的破坏,提升了C@SGG材料的循环性能。同时通过无定形碳表面包覆威廉希尔官方网站
,有效地降低了该材料的比表面积,减少了副反应,有效地提升了材料的首次效率。
(责任编辑:fqj)
-
锂电池
+关注
关注
260文章
8132浏览量
170615 -
电池威廉希尔官方网站
+关注
关注
12文章
905浏览量
49320
发布评论请先 登录
相关推荐
评论