一种新的目标分类特征深度学习模型
大小:1.70 MB 人气: 2018-03-20 需要积分:1
标签:分类(12865)
为提高低配置计算环境中的视觉目标实时在线分类特征提取的时效性和分类准确率,提出一种新的目标分类特征深度学习模型。根据高时效性要求,选用分类器模型离线深度学习的策略,以节约在线训练时间。针对网络深度受限和高识别率要求,提取图像的局部方向梯度直方图( HOG)特征,构建稀疏自编码器栈对HOG特征进行深层次编码,设计Softmax多分类器对所抽取的特征进行分类。在深度神经网络模型学习过程中,引入最小化各层结构风险和微调全网参数的二阶段最优化策略。利用场景图像库Caltechl01和手写数字库MNIST的训练样本与测试样本进行对比实验,结果表明,该模型在局部特征提取方面的时效优于单层卷积神经网络( CNN)模型,分类准确率高于CNN、栈式自编码器等对比模型。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
下载地址
一种新的目标分类特征深度学习模型下载
相关电子资料下载
- 人工神经网络模型的分类有哪些 134
- 一文快速了解RFID威廉希尔官方网站 的构成及分类 109
- 车载无线威廉希尔官方网站 分类介绍 414
- 机器视觉光源的作用、分类及实际应用 118
- 神经元的分类包括哪些 235
- 卷积神经网络分类方法有哪些 102
- cnn卷积神经网络分类有哪些 106
- 什么神经网络模型适合做分类 114
- 卷积神经网络在文本分类领域的应用 152
- 风华贴片电容的分类详细介绍 86