基于核函数的谱嵌入聚类KSEC模型
大小:0.83 MB 人气: 2018-01-15 需要积分:2
谱嵌入聚类(SEC)算法要求样本满足流形假设,样本标签总是可以嵌入到一个线性空间中去,这为线性可分数据的谱嵌入聚类问题提供了新的思路,但该算法使用的线性映射函数不适用于处理高维非线性数据。针对这一问题,通过核化线性映射函数,建立了基于核函数的谱嵌入聚类( KSEC)模型,该模型既能解决线性映射函数不能处理非线性数据的问题,又实现了对高维数据的核降维。在真实数据集上的实验分析结果表明,使用所提算法后聚类正确率平均提高了13. 11%,最高可提高31. 62%,特别在高维数据上平均提高了16. 53%,而且在算法关于参数的敏感度实验中发现算法的稳定性更好。所以改进后的算法对高维非线性数据具有很好的聚类效果,获得了比传统谱嵌入聚类算法更高的聚类准确率和更好的聚类性能。所提方法可以用于诸如遥感影像这类复杂图像的处理领域。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
下载地址
基于核函数的谱嵌入聚类KSEC模型下载
相关电子资料下载
- 对新辅助TCHP治疗响应的HER2+乳腺癌空间蛋白质组特征 547
- 四种获取内核函数地址的方法 850
- 使用轮廓分数提升时间序列聚类的表现 316
- 基于K-means聚类算法的图像分割 1113
- 介绍一种基于最小化平方误差的聚类算法 498
- 介绍一种基于分层聚类方法的木马通信行为检测模型 1061
- 深度学习聚类的综述 780
- 聚类分析中的机器学习与统计方法综述(二) 679
- 如何在 Python 中安装和使用顶级聚类算法 415
- 支持向量机(核函数的定义) 637