人工智能的五大流派
大小:0.4 MB 人气: 2017-12-08 需要积分:1
“人工智能”是一个非常含糊的术语。这是因为人工智能(AI)是1955年在一种非常傲慢的情境下被创造出来的一个术语:
我们建议于1956年夏天在新罕布什尔汉诺威的达特茅斯学院进行一个为期2个月,10个人参加的人工智能研讨会。
该研讨会将基于如下设想进行:学习的每个方面或有关智能的其他特征原则上可以非常精确地进行描述,以至于能被机器interwetten与威廉的赔率体系 。我们将尝试找到让机器使用语言、形式抽象和概念的方式,解决现在只能由人类解决的问题,并提升人类智能。
AI 经历了半个多世纪,也带上了太多其他学科的印记。在很长一段时间里,AI 被符号主义者统治。符号主义是一种基于规则的系统,具有“零学习”(Zero Learning)特点。20世纪80年代,一种新的 AI 方法开始出现,我们称之为机器学习。最后,还有“简单学习”(Simple Learning)。然而,在最近十年里,最大的变化是我们偶然发现了“深度学习”,而且它杀伤力极强,似乎无所不能。
当然,这是一个非常简化的 AI 历史。实际上,AI 领域有许多不同的方法和流派。Pedro Domingo 在《终极算法》一书中描述了5个不同的 AI “学派”。一位名为 solidrocketfuel 的 Y Combinator 用户不甘示弱,发了条帖子,说 AI 至少有“21 个不同的流派”。
对于任何计划搞 AI 的人来说,一个非常重要的事情是了解 AI 的这些不同学派和方法之间之间的差异。AI 不是一个同质的领域,而是不断发生不同学派之间的争议的领域。下图是一个概况:
符号学派(Symbolists):是使用基于规则的符号系统做推理的人。大部分 AI 都围绕着这种方法。使用 Lisp 和 Prolog 的方法属于这一派,使用 SemanticWeb,RDF 和 OWL 的方法也属于这一派。其中一个最雄心勃勃的尝试是 Doug Lenat 在80年代开发的 Cyc,试图用逻辑规则将我们对这个世界的理解编码。这种方法主要的缺陷在于其脆弱性,因为在边缘情况下,一个僵化的知识库似乎总是不适用。但在现实中存在这种模糊性和不确定性是不可避免的。
非常好我支持^.^
(2) 100%
不好我反对
(0) 0%