基于评分相似性的群稀疏矩阵分解推荐算法
大小:0.73 MB 人气: 2017-12-05 需要积分:3
如何提高系统的推荐精度,是当前推荐系统面临的重要问题。对矩阵分解模型进行了研究,针对评分数据的群结构性问题,提出了一种基于评分相似性的群稀疏矩阵分解模型( SSMF-GS)。首先,根据用户的评分行为对评分数据矩阵进行分群,获得相似用户群评分矩阵;然后,通过SSMF-GS算法对相似用户群评分矩阵进行群稀疏矩阵分解;最后,采用交替优化算法对模型进行求解。所提模型可以筛选出不同用户群的偏好潜在项目特征,提升了潜在特征的可解释性。在GroupLens网站上提供的MovieLens数据集上进行仿真实验,实验结果表明,所提算法可以显著提高预测精度,平均绝对误差(MAE)及均方根误差(RMSE)指标均表现出良好的性能。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
下载地址
基于评分相似性的群稀疏矩阵分解推荐算法下载
相关电子资料下载
- TikTok将开发独立版推荐算法,以满足美国用户需求? 426
- 快手的短视频推荐算法(1) 782
- 稀疏矩阵包含了哪几种基本的运算操作呢 1410
- 详解推荐算法的架构流程 2871
- 《麻省理工科技评论》发布了最新的2021年10大突破性威廉希尔官方网站 的概念 2813
- top-N推荐算法评测的影响有哪些? 1846
- 基于赛灵思FPGA的广告推荐算法Wide and deep硬件加速案例 2775
- 互联网广告推荐迎来变革,雪湖科技联合赛灵思发布推荐算法解决方案 1614
- 基于阿里云FPGA云的广告推荐算法加速器 985
- 基于深度学习的推荐算法大部分都存在不同程度的数据集缺失和源码缺失 3690