您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于RPCA的预测子空间聚类算法

大小:0.57 MB 人气: 2017-11-22 需要积分:1

  预测子空间聚类PSC算法由于建立在PCA模型下,无法鲁棒地进行主元分析,导致在面对带有强噪声的数据时,聚类性能受到严重影响。为了提高PSC算法对噪声的鲁棒性,利用近年来受到广泛关注的RPCA分解威廉希尔官方网站 得到数据的低秩结构,鲁棒地提取子空间,具体地,通过将RPCA模型融入PSC算法,提出了一种基于RPCA的预测子空间聚类算法。该算法在RPCA模型下检测强影响点,不但可以有效地进行变量选择和模型选择,而且更重要的是改善了PSC算法在噪声环境下的聚类性能。在真实基因表达数据集上的实验结果表明,改进后的算法较之经典的PSC算法无论在无噪声或加噪声环境下都表现出一定聚类优势及良好的鲁棒性。
 

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!