图2:电源纹波示例。
c.与b类似,很多ASIC专用芯片、CPLD在上电初始化的时候都需要有稳定的电压,这里不再累述,可以参阅相关芯片资料。
2.采用单电源模块设计的电路
目前在系统设计中,为了兼容各种电压也常采用48-5V单电源模块和加直流电压转换器的方案。其实采用单电源模块的设计同样面临上面提到的问题。单电源模块也存在上电顺序先后的问题。因为电源模块直接输出5V,其他电压值通过直流电压转换器转换,因此小于5V的电压上电肯定晚于5V。
在蓄电池供电的情况下,由于蓄电池的本身特性,在上电的时候其电压是缓慢上升的,由于现在DC-DC模块的设计差异,某些模块在慢上电的过程中出现的电压摆动仍然会影响FPGA和ASIC的初始化。
解决方法
对应可能出现的问题,可以找到相应的解决方法。在前文分析的第一种情况(采用多电源模块)下,对应a,可以复位MCU;对应b,可以复位FPGA;对应c,可以复位相关芯片。对于第2种情况(采用单电源模块),复位相应的芯片也可以解决问题。所以最直接有效的方法就是复位。
当然我们不可能等到故障出现的时候再去手动复位,这里可以考虑使用Maxim公司的MAX708芯片来完成自动复位的功能。
MAX708是一种微处理器电源监控芯片,可同时输出高电平有效和低电平有效的复位信号。复位信号可由VCC 电压、手动复位输入或由独立的比较器触发。独立的比较器可用于监视第二个电源信号。在电路设计中,MCU单元一般由51
单片机构成,单片机的复位信号是高有效。一般FPGA和ASIC的复位信号都是低有效。由于MAX708可同时输出高电平有效和低电平有效的复位信号,因此可以利用MAX708的这个特点来解决电路内MCU、FPGA、ASIC的上电复位问题。
如图3所示,当PFI端子上的电压值小于1.25V时,PFO端子将输出低电平(平时为高)。由于PFI端子的这个特性,可以用它来监控电路上的1.5V电压。在通信设备里,电路上一般含有5V、3.3V、2.5V、1.8V、1.5V的电压值,1.5V应该属于末级电压,就是说通过直流电压转换器最后转压出来的,我们监控了最小电压(1.5V),自然也就不必理会它的上级电压了。
图3:利用MAX708实现上电复位应用。
这里PFI上的电压值大概为1.3V,当然电压值越接近1.25V,电压监控的灵敏度越高。可以用公式{(Vsupply-VPFI)/R1}=(VPFI/R2)计算出需要的电阻比值。这里Vsupply为1.5V,VPFI为1.3V。
可以想象,电路上电过程中,1.5V的末级电压如果没有达到要求,复位信号将一直存在,包括给MCU的RST复位信号,和给其它芯片的低电平有效的复位信号。图3中的MREST为手动添加的复位信号。
需要指出的是,MAX708本身可以监控VCC电压(这里为5V),这对电路采用多电源模块的设计是很有用的。因为两个电源模块相互独立,5V和1.5V可能不是源于同一个电源模块,所以在监控1.5V的同时也需要监控5V电压。
当然,由于MAX708芯片本身的限制,它无法监控小于1.25V的电压。但是在电信级设备中,功耗问题并不很迫切,所以这样小的电压基本上应用很少。
本文小结
电源波动造成的电路上电失败故障,只是涉及电源可靠性的一个方面。这里举的一个实际应用的例子可能并不适合于各种情况,其目的只是在于提醒设计人员在有关电源设计中可能存在的隐患。
现在,FPGA和ASIC在降低功耗的同时,也具有越来越多的驱动电压,某些器件还特别对各种电压的上电顺序有严格的要求。
硬件工程师在应用这些器件进行系统功能设计的同时,也将越来越多的面临如何提高电源可靠性方面的挑战。