本篇源自:优秀创作者 lulugl
本文将介绍基于米尔电子MYD-LR3576开发板(米尔基于瑞芯微 RK3576开发板)的人脸疲劳检测方案测试。 米尔基于RK3576核心板/开发板
【前言】 人脸疲劳检测:一种通过分析人脸特征来判断一个人是否处于疲劳状态的威廉希尔官方网站
。其原理主要基于计算机视觉和机器学习方法。当人疲劳时,面部会出现一些特征变化,如眼睛闭合程度增加、眨眼频率变慢、打哈欠、头部姿态改变等。
例如,通过检测眼睛的状态来判断疲劳程度是一个关键部分。正常情况下,人的眨眼频率相对稳定,而当疲劳时,眨眼频率会降低,并且每次眨眼时眼睛闭合的时间可能会延长。同时,头部可能会不自觉地下垂或者摇晃,这些特征都可以作为疲劳检测的依据。米尔MYC-LR3576采用8核CPU+搭载6 TOPS的NPU加速器,3D GPU,能够非常轻松的实现这个功能,下面就如何实现这一功能分享如下: 【硬件】 1、米尔MYC-LR3576开发板
2、USB摄像头 【软件】 1、v4l2
2、openCV
3、dlib库:dlib 是一个现代化的 C++ 工具包,它包含了许多用于机器学习、图像处理、数值计算等多种任务的算法和工具。它的设计目标是提供高性能、易于使用的库,并且在开源社区中被广泛应用。 【实现步骤】 1、安装python-opencv
2、安装dlib库
3、安装v4l2库 【代码实现】 1、引入cv2、dlib以及线程等:
- import cv2
- import dlib
- import numpy as np
- import time
- from concurrent.futures import ThreadPoolExecutor
- import threading
复制代码
2、初始化dlib的面部检测器和特征点预测器
- detector = dlib.get_frontal_face_detector()
- predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
复制代码
3、定义计算眼睛纵横比的函数
- def eye_aspect_ratio(eye):
- A = np.linalg.norm(np.array(eye[1]) - np.array(eye[5]))
- B = np.linalg.norm(np.array(eye[2]) - np.array(eye[4]))
- C = np.linalg.norm(np.array(eye[0]) - np.array(eye[3]))
- ear = (A + B) / (2.0 * C)
- return ear
复制代码
4、定义计算头部姿势的函数
- def get_head_pose(shape):
- # 定义面部特征点的三维坐标
- object_points = np.array([
- (0.0, 0.0, 0.0), # 鼻尖
- (0.0, -330.0, -65.0), # 下巴
- (-225.0, 170.0, -135.0), # 左眼左眼角
- (225.0, 170.0, -135.0), # 右眼右眼角
- (-150.0, -150.0, -125.0), # 左嘴角
- (150.0, -150.0, -125.0) # 右嘴角
- ], dtype=np.float32)
- image_pts = np.float32([shape[i] for i in [30, 8, 36, 45, 48, 54]])
- size = frame.shape
- focal_length = size[1]
- center = (size[1] // 2, size[0] // 2)
- camera_matrix = np.array(
- [[focal_length, 0, center[0]],
- [0, focal_length, center[1]],
- [0, 0, 1]], dtype="double"
- )
- dist_coeffs = np.zeros((4, 1))
- (success, rotation_vector, translation_vector) = cv2.solvePnP(
- object_points, image_pts, camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE
- )
- rmat, _ = cv2.Rodrigues(rotation_vector)
- angles, _, _, _, _, _ = cv2.RQDecomp3x3(rmat)
- return angles
复制代码
5、定义眼睛纵横比阈值和连续帧数阈值
- EYE_AR_THRESH = 0.3
- EYE_AR_CONSEC_FRAMES = 48
复制代码
6、打开摄像头
我们先使用v4l2-ctl --list-devices来例出接在开发板上的列表信息:
- USB Camera: USB Camera (usb-xhci-hcd.0.auto-1.2):
- /dev/video60
- /dev/video61
- /dev/media7
复制代码
在代码中填入60为摄像头的编号:
- cap = cv2.VideoCapture(60)
- cap.set(cv2.CAP_PROP_FRAME_WIDTH, 480) # 降低分辨率
- cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 320)
复制代码
7、创建多线程处理函数,实现采集与分析分离:
- # 多线程处理函数
- def process_frame(frame):
- global COUNTER, TOTAL
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
- faces = detector(gray, 0) # 第二个参数为0,表示不使用upsampling
- for face in faces:
- landmarks = predictor(gray, face)
- shape = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(68)]
-
- left_eye = shape[36:42]
- right_eye = shape[42:48]
- left_ear = eye_aspect_ratio(left_eye)
- right_ear = eye_aspect_ratio(right_eye)
- ear = (left_ear + right_ear) / 2.0
- if ear < EYE_AR_THRESH:
- with lock:
- COUNTER += 1
- else:
- with lock:
- if COUNTER >= EYE_AR_CONSEC_FRAMES:
- TOTAL += 1
- COUNTER = 0
- # 绘制68个特征点
- for n in range(0, 68):
- x, y = shape[n]
- cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)
- cv2.putText(frame, f"Eye AR: {ear:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Blink Count: {TOTAL}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- # 计算头部姿势
- angles = get_head_pose(shape)
- pitch, yaw, roll = angles
- cv2.putText(frame, f"Pitch: {pitch:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Yaw: {yaw:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Roll: {roll:.2f}", (10, 180), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- # 判断疲劳状态
- if COUNTER >= EYE_AR_CONSEC_FRAMES or abs(pitch) > 30 or abs(yaw) > 30 or abs(roll) > 30:
- cv2.putText(frame, "Fatigue Detected!", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- return frame
复制代码
8、创建图像显示线程:
- with ThreadPoolExecutor(max_workers=2) as executor:
- future_to_frame = {}
- while True:
- ret, frame = cap.read()
- if not ret:
- break
- # 提交当前帧到线程池
- future = executor.submit(process_frame, frame.copy())
- future_to_frame[future] = frame
- # 获取已完成的任务结果
- for future in list(future_to_frame.keys()):
- if future.done():
- processed_frame = future.result()
- cv2.imshow("Frame", processed_frame)
- del future_to_frame[future]
- break
- # 计算帧数
- fps_counter += 1
- elapsed_time = time.time() - start_time
- if elapsed_time > 1.0:
- fps = fps_counter / elapsed_time
- fps_counter = 0
- start_time = time.time()
- cv2.putText(processed_frame, f"FPS: {fps:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
- if cv2.waitKey(1) & 0xFF == ord('q'):
复制代码
实现效果:
根据检测的结果,我们就可以来实现疲劳提醒等等的功能。
整体代码如下:
- import cv2
- import dlib
- import numpy as np
- import time
- from concurrent.futures import ThreadPoolExecutor
- import threading
- # 初始化dlib的面部检测器和特征点预测器
- detector = dlib.get_frontal_face_detector()
- predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
- # 修改字体大小
- font_scale = 0.5 # 原来的字体大小是0.7,现在改为0.5
- # 定义计算眼睛纵横比的函数
- def eye_aspect_ratio(eye):
- A = np.linalg.norm(np.array(eye[1]) - np.array(eye[5]))
- B = np.linalg.norm(np.array(eye[2]) - np.array(eye[4]))
- C = np.linalg.norm(np.array(eye[0]) - np.array(eye[3]))
- ear = (A + B) / (2.0 * C)
- return ear
- # 定义计算头部姿势的函数
- def get_head_pose(shape):
- # 定义面部特征点的三维坐标
- object_points = np.array([
- (0.0, 0.0, 0.0), # 鼻尖
- (0.0, -330.0, -65.0), # 下巴
- (-225.0, 170.0, -135.0), # 左眼左眼角
- (225.0, 170.0, -135.0), # 右眼右眼角
- (-150.0, -150.0, -125.0), # 左嘴角
- (150.0, -150.0, -125.0) # 右嘴角
- ], dtype=np.float32)
- image_pts = np.float32([shape[i] for i in [30, 8, 36, 45, 48, 54]])
- size = frame.shape
- focal_length = size[1]
- center = (size[1] // 2, size[0] // 2)
- camera_matrix = np.array(
- [[focal_length, 0, center[0]],
- [0, focal_length, center[1]],
- [0, 0, 1]], dtype="double"
- )
- dist_coeffs = np.zeros((4, 1))
- (success, rotation_vector, translation_vector) = cv2.solvePnP(
- object_points, image_pts, camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE
- )
- rmat, _ = cv2.Rodrigues(rotation_vector)
- angles, _, _, _, _, _ = cv2.RQDecomp3x3(rmat)
- return angles
- # 定义眼睛纵横比阈值和连续帧数阈值
- EYE_AR_THRESH = 0.3
- EYE_AR_CONSEC_FRAMES = 48
- # 初始化计数器
- COUNTER = 0
- TOTAL = 0
- # 创建锁对象
- lock = threading.Lock()
- # 打开摄像头
- cap = cv2.VideoCapture(60)
- cap.set(cv2.CAP_PROP_FRAME_WIDTH, 480) # 降低分辨率
- cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 320)
- # 初始化帧计数器和时间戳
- fps_counter = 0
- start_time = time.time()
- # 多线程处理函数
- def process_frame(frame):
- global COUNTER, TOTAL
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
- faces = detector(gray, 0) # 第二个参数为0,表示不使用upsampling
- for face in faces:
- landmarks = predictor(gray, face)
- shape = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(68)]
-
- left_eye = shape[36:42]
- right_eye = shape[42:48]
- left_ear = eye_aspect_ratio(left_eye)
- right_ear = eye_aspect_ratio(right_eye)
- ear = (left_ear + right_ear) / 2.0
- if ear < EYE_AR_THRESH:
- with lock:
- COUNTER += 1
- else:
- with lock:
- if COUNTER >= EYE_AR_CONSEC_FRAMES:
- TOTAL += 1
- COUNTER = 0
- # 绘制68个特征点
- for n in range(0, 68):
- x, y = shape[n]
- cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)
- cv2.putText(frame, f"Eye AR: {ear:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Blink Count: {TOTAL}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- # 计算头部姿势
- angles = get_head_pose(shape)
- pitch, yaw, roll = angles
- cv2.putText(frame, f"Pitch: {pitch:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Yaw: {yaw:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Roll: {roll:.2f}", (10, 180), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- # 判断疲劳状态
- if COUNTER >= EYE_AR_CONSEC_FRAMES or abs(pitch) > 30 or abs(yaw) > 30 or abs(roll) > 30:
- cv2.putText(frame, "Fatigue Detected!", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- return frame
- with ThreadPoolExecutor(max_workers=2) as executor:
- future_to_frame = {}
- while True:
- ret, frame = cap.read()
- if not ret:
- break
- # 提交当前帧到线程池
- future = executor.submit(process_frame, frame.copy())
- future_to_frame[future] = frame
- # 获取已完成的任务结果
- for future in list(future_to_frame.keys()):
- if future.done():
- processed_frame = future.result()
- cv2.imshow("Frame", processed_frame)
- del future_to_frame[future]
- break
- # 计算帧数
- fps_counter += 1
- elapsed_time = time.time() - start_time
- if elapsed_time > 1.0:
- fps = fps_counter / elapsed_time
- fps_counter = 0
- start_time = time.time()
- cv2.putText(processed_frame, f"FPS: {fps:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- # 释放摄像头并关闭所有窗口
- cap.release()
- cv2.destroyAllWindows()
复制代码
【总结】 【米尔MYC-LR3576核心板及开发板】
这块开发板性能强大,能轻松实现对人脸的疲劳检测,通过计算结果后进入非常多的工业、人工智能等等的实用功能。
|