UART
Universal Asynchronous Receiver/Transmitter,通用异步收发传输器
- Compatible with industry-standard 16450/16550 UARTs
- 64-Byte Transmit and receive data FIFOs
- Supports DMA controller interface
- Supports Software/ Hardware Flow Control
- Supports IrDA 1.0 SIR
- Supports RS-485 mode
模块配置
其menuconfig 的配置如下:
Kernel Setup --->
Drivers Setup --->
SoC HAL Drivers --->
UART devices --->
[*] enable uart driver
[*] enbale uart hal APIs Test command
源码结构
.
│ hal_uart.c # 驱动源码
│ platform-uart.h # 平台选择头文件
│ uart.h # 驱动私有头文件
└─platform
uart-sun20iw2p1.h # 平台特化定义
模块接口说明
头文件
#include <hal_uart.h>
返回值枚举
typedef enum
{
HAL_UART_STATUS_ERROR_PARAMETER = -4,
HAL_UART_STATUS_ERROR_BUSY = -3,
HAL_UART_STATUS_ERROR_UNINITIALIZED = -2,
HAL_UART_STATUS_ERROR = -1,
HAL_UART_STATUS_OK = 0
} hal_uart_status_t;
波特率枚举
typedef enum
{
UART_BAUDRATE_300 = 0,
UART_BAUDRATE_600,
UART_BAUDRATE_1200,
UART_BAUDRATE_2400,
UART_BAUDRATE_4800,
UART_BAUDRATE_9600,
UART_BAUDRATE_19200,
UART_BAUDRATE_38400,
UART_BAUDRATE_57600,
UART_BAUDRATE_115200,
UART_BAUDRATE_230400,
UART_BAUDRATE_576000,
UART_BAUDRATE_921600,
UART_BAUDRATE_1000000,
UART_BAUDRATE_1500000,
UART_BAUDRATE_3000000,
UART_BAUDRATE_4000000,
UART_BAUDRATE_MAX,
} uart_baudrate_t;
UART 字长枚举
typedef enum
{
UART_WORD_LENGTH_5 = 0,
UART_WORD_LENGTH_6,
UART_WORD_LENGTH_7,
UART_WORD_LENGTH_8,
} uart_word_length_t;
UART 停止位枚举
typedef enum
{
UART_STOP_BIT_1 = 0,
UART_STOP_BIT_2,
} uart_stop_bit_t;
UART 奇偶枚举
typedef enum
{
UART_PARITY_NONE = 0,
UART_PARITY_ODD,
UART_PARITY_EVEN
} uart_parity_t;
UART 配置结构体
typedef struct
{
uart_baudrate_t baudrate;
uart_word_length_t word_length;
uart_stop_bit_t stop_bit;
uart_parity_t parity;
} _uart_config_t;
获取UART驱动的版本号
函数原型:
sunxi_hal_version_t hal_uart_get_version(int32_t dev)
参数:
返回:
初始化UART驱动
函数原型:
int32_t hal_uart_init(int32_t uart_port);
参数:
返回:
初始化异构AMP UART控制台
函数原型:
int32_t hal_uart_init_for_amp_cli(int32_t uart_port);
参数:
返回:
卸载UART驱动
函数原型:
int32_t hal_uart_deinit(int32_t uart_port);
参数:
返回:
发送数据
函数原型:
int32_t hal_uart_send(int32_t dev, const uint8_t *data, uint32_t num);
参数:
- dev:UART 端口号
- data:准备发送的数据buffer
- num:buffer 大小
返回:
发送一个字符
函数原型:
int32_t hal_uart_put_char(int32_t dev, char c);
参数:
返回:
接收数据
函数原型:
int32_t hal_uart_receive(int32_t dev, uint8_t *data, uint32_t num);
参数:
- dev:UART 端口号
- data:接收数据缓冲区
- num:接收数据的大小
返回:
非阻塞接收数据
函数原型:
int32_t hal_uart_receive_no_block(int32_t dev, uint8_t *data, uint32_t num, int32_t timeout);
参数:
- dev:UART 端口号
- data:接收数据缓冲区
- num:接收数据的大小
- timeout:超时时间
返回:
接收一个字符
函数原型:
uint8_t hal_uart_get_char(int32_t dev);
参数:
返回:
设置 UART 工作参数
函数原型:
int32_t hal_uart_control(int32_t uart_port, int cmd, void *args);
参数:
- uart_port:UART 端口号
- cmd:保留
- args: 指向 _uart_config_t 类型的结构体
返回:
轮询接收
函数原型:
int32_t hal_uart_receive_polling(int32_t dev, uint8_t *data, uint32_t num);
参数:
- dev:UART 端口号
- data:接收数据缓冲区
- num:接收数据的大小
返回:
查看轮询接收状态
函数原型:
int32_t hal_uart_check_poll_state(int32_t dev_id, short key);
参数:
- dev_id:UART 端口号
- key:标志位,取值 POLLIN,POLLOUT,POLLERR
返回:
执行唤醒处理函数
函数原型:
int32_t hal_uart_poll_wakeup(int32_t dev_id, short key);
参数:
- dev_id:UART 端口号
- key:标志位,取值 POLLIN,POLLOUT,POLLERR
返回:
注册唤醒处理函数
函数原型:
int32_t hal_uart_register_poll_wakeup(poll_wakeup_func poll_wakeup);
参数:
返回:
设置硬件流控
函数原型:
void hal_uart_set_hardware_flowcontrol(uart_port_t uart_port);
参数:
返回:
禁用硬件流控
函数原型:
void hal_uart_disable_flowcontrol(uart_port_t uart_port);
参数:
返回:
设置 UART 回环
函数原型:
void hal_uart_set_loopback(uart_port_t uart_port, bool enable);
参数:
- uart_port:UART 端口号
- enable:是否开启
返回:
使能 RX 中断
函数原型:
int32_t hal_uart_enable_rx(int32_t uart_port);
参数:
返回:
失能 RX 中断
函数原型:
int32_t hal_uart_disable_rx(int32_t uart_port);
参数:
返回:
模块使用范例
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <hal_log.h>
#include <hal_cmd.h>
#include <hal_timer.h>
#include <hal_uart.h>
static void cmd_usage(void)
{
printf("Usage:\n"
"\t hal_uart <port> <baudrate>\n");
}
int cmd_test_uart(int argc, char **argv)
{
uint8_t tbuf[6] = {"hello"};
uint8_t rbuf[10] = {0};
uart_port_t port;
uint32_t baudrate;
_uart_config_t uart_config;
int i;
hal_log_info("Testing UART in loopback mode");
if (argc != 3) {
cmd_usage();
return -1;
}
port = strtol(argv[1], NULL, 0);
baudrate = strtol(argv[2], NULL, 0);
if(CONFIG_CLI_UART_PORT == port){
hal_log_info("uart0 can't test, please use other port!");
return -1;
}
memset(rbuf, 0, 10 * sizeof(uint8_t));
switch (baudrate) {
case 4800:
uart_config.baudrate = UART_BAUDRATE_4800;
break;
case 9600:
uart_config.baudrate = UART_BAUDRATE_9600;
break;
case 115200:
uart_config.baudrate = UART_BAUDRATE_115200;
break;
case 1500000:
uart_config.baudrate = UART_BAUDRATE_1500000;
break;
case 4000000:
uart_config.baudrate = UART_BAUDRATE_4000000;
break;
default:
hal_log_info("Using default baudrate: 115200");
uart_config.baudrate = UART_BAUDRATE_115200;
break;
}
uart_config.word_length = UART_WORD_LENGTH_8;
uart_config.stop_bit = UART_STOP_BIT_1;
uart_config.parity = UART_PARITY_NONE;
hal_uart_init(port);
hal_uart_control(port, 0, &uart_config);
hal_uart_disable_flowcontrol(port);
hal_uart_set_loopback(port, 1);
hal_uart_send(port, tbuf, 5);
hal_uart_receive_no_block(port, rbuf, 5, MS_TO_OSTICK(1000));
printf("Sending:");
for (i = 0; i < 5; i++)
printf("%c", tbuf[i]);
printf("\n");
printf("Receiving:");
for (i = 0; i < 5; i++)
printf("%c", rbuf[i]);
printf("\n");
for (i = 0; i < 5; i++) {
if (tbuf[i] != rbuf[i])
break;
}
if (i == 5) {
hal_log_info("Test hal_uart_init API success!");
hal_log_info("Test hal_uart_control API success!");
hal_log_info("Test hal_uart_disable_flowcontrol API success!");
hal_log_info("Test hal_uart_set_loopback API success!");
hal_log_info("Test hal_uart_send API success!");
hal_log_info("Test hal_uart_receive API success!");
hal_log_info("Test hal_uart_deinit API success!");
hal_log_info("Test uart hal APIs success!");
} else {
hal_log_info("Test uart hal APIs failed!");
}
hal_msleep(1000);
hal_uart_deinit(port);
return 0;
}
FINSH_FUNCTION_EXPORT_CMD(cmd_test_uart, hal_uart, uart hal APIs tests)
#define BUFFSIZE 4096
static void cmd_stress_usage(void)
{
printf("Usage:\n"
"\t hal_uart <port> <baudrate> <flowctrl> <loopback> <len>\n");
}
int cmd_test_uart_stress(int argc, char **argv)
{
uint8_t *tbuf = malloc(BUFFSIZE);
uint8_t *rbuf = malloc(BUFFSIZE);
uart_port_t port;
uint32_t baudrate;
_uart_config_t uart_config;
int i;
int flowctrl, loopback, testlen;
hal_log_info("Testing UART in loopback mode with stress");
if (argc != 6) {
cmd_stress_usage();
free(tbuf);
free(rbuf);
return -1;
}
port = strtol(argv[1], NULL, 0);
baudrate = strtol(argv[2], NULL, 0);
flowctrl = strtol(argv[3], NULL, 0);
loopback = strtol(argv[4], NULL, 0);
testlen = strtol(argv[5], NULL, 0);
for (i = 0; i < BUFFSIZE; i++) {
tbuf[i] = ('a' + i) & 0xff;
}
memset(rbuf, 0, BUFFSIZE * sizeof(uint8_t));
switch (baudrate) {
case 4800:
uart_config.baudrate = UART_BAUDRATE_4800;
break;
case 9600:
uart_config.baudrate = UART_BAUDRATE_9600;
break;
case 115200:
uart_config.baudrate = UART_BAUDRATE_115200;
break;
case 1500000:
uart_config.baudrate = UART_BAUDRATE_1500000;
break;
default:
hal_log_info("Using default baudrate: 115200");
uart_config.baudrate = UART_BAUDRATE_115200;
break;
}
uart_config.word_length = UART_WORD_LENGTH_8;
uart_config.stop_bit = UART_STOP_BIT_1;
uart_config.parity = UART_PARITY_NONE;
hal_uart_init(port);
hal_uart_control(port, 0, &uart_config);
printf("flow:%d, loopback:%d len:%d\n", flowctrl, loopback, testlen);
if (flowctrl)
hal_uart_set_hardware_flowcontrol(port);
else
hal_uart_disable_flowcontrol(port);
if (loopback)
hal_uart_set_loopback(port, 1);
else
hal_uart_set_loopback(port, 0);
printf("send\n");
hal_uart_send(port, tbuf, testlen);
printf("send done\n");
printf("recv\n");
hal_uart_receive(port, rbuf, testlen);
printf("recv done\n");
#if 0
printf("Sending:");
for (i = 0; i < testlen; i++) {
if (i % 16 == 0)
printf("\n");
printf("0x%x ", tbuf[i]);
}
printf("\n");
printf("Receiving:");
for (i = 0; i < testlen; i++) {
if (i % 16 == 0)
printf("\n");
printf("0x%x ", rbuf[i]);
}
printf("\n");
#endif
for (i = 0; i < testlen; i++) {
if (tbuf[i] != rbuf[i]) {
printf("check %d fail, 0x%x != 0x%x\n", i, tbuf[i], rbuf[i]);
break;
}
}
if (i == testlen) {
hal_log_info("Test hal_uart_init API success!");
hal_log_info("Test hal_uart_control API success!");
hal_log_info("Test hal_uart_disable_flowcontrol API success!");
hal_log_info("Test hal_uart_set_loopback API success!");
hal_log_info("Test hal_uart_send API success!");
hal_log_info("Test hal_uart_receive API success!");
hal_log_info("Test hal_uart_deinit API success!");
hal_log_info("Test uart hal APIs success!");
} else {
hal_log_info("Test uart hal APIs failed!");
}
hal_msleep(1000);
hal_uart_deinit(port);
free(tbuf);
free(rbuf);
return 0;
}
FINSH_FUNCTION_EXPORT_CMD(cmd_test_uart_stress, hal_uart_stress, uart hal APIs tests)