从上方的相量图可以看出,电压矢量产生一个矩形三角形,由斜边V S,水平轴V R和垂直轴V L – V C组成。 希望您会注意到,这形成了以前最喜欢电压三角形,因此我们可以在该电压三角形上使用毕达哥拉斯定理,以数学方式获得V S的值,如图所示。 串联RLC电路的电压三角
请注意,使用上式时,最终无功电压值必须始终为正值,也就是说,必须始终将最小电压与最大电压相去,我们不能在V R上加上负电压,因此正确的是有VL - V c 或 V c - VL。从最大值中减去最小值,否则将无法计算V S。
从上面我们知道,电流在串联RLC电路的所有组件中具有相同的幅度和相位。然后,还可以根据流过的电流和每个元件上的电压来数学描述每个元件上的电压。
通过将这些值代入上述毕达哥拉斯方程中的电压三角形,将得到:
因此,我们可以看到电源电压的幅度与流过电路的电流的幅度成正比。该比例常数称为电路的阻抗,该阻抗最终取决于电阻以及电感和电容电抗的大小。
然后,在上述的串联RLC电路,可以看出的是,反对电流流动是由三个部分组成,高达X 大号,X Ç和- [R与电抗,X Ť任何RLC串联电路被定义为:X Ť = X L – X C 或 X T = X C – X L 中较大的一个。因此,电路的总阻抗被认为是驱动电流通过它所需的电压源。
串联RLC电路的阻抗Z取决于角频率ω,X L和X C一样。 如果电容电抗大于电感电抗X C > X L,则整个电路电抗为电容性,从而给出超前的相位角。
同样,如果电感电抗大于电容电抗X L > X C,则整个电路电抗为电感性,从而给串联电路一个滞后的相角。如果这两个电抗的是相同的,X 大号 = X Ç然后发生这种情况被称为共振频率,并产生效果的角频率共振,我们将看更详细的另一个教程。
然后,电流的大小取决于施加到串联RLC电路的频率。当阻抗Z处于最大值时,电流为最小值,同样,当Z处于最小值时,电流为最大值。因此,上述阻抗公式可以重写为:
由于相位角θ作为51.8正值计算ø电路的总电抗必须是电感性的。由于我们在串联RLC电路中将电流矢量作为参考矢量,所以电流使电源电压“滞后” 51.8 o,因此我们可以说相位角滞后了,这已由助记符“ ELI”证实。 系列RLC电路摘要
在包含电阻器,电感器和电容器的串联RLC电路中,电源电压V S是由三个分量V R,V L和V C组成的相量之和,并且这三个分量共同具有电流。由于电流对于所有三个分量都是公共的,因此在构建电压三角形时将其用作水平参考。
电路的阻抗是与电流流动完全相反的方向。对于串联RLC电路,可以通过将电压三角形的每一边除以其电流I来绘制阻抗三角形。在电阻元件上的电压降等于余* R,在这两个反应性元件上的电压是I * X = I * X 大号 - I * X Ç而源极电压等于余* Z。V S与I之间的角度将是相位角θ。
当使用包含多个纯电阻或纯电阻的电阻,电容或电感的串联RLC电路时,可以将它们全部加在一起以形成单个组件。例如,所有电阻加在一起,R T =(R 1 + R 2 + R 3 ) …等等,或者所有电感的L T =(L 1 + L 2 + L 3 ) …等等,这样包含许多元素的电路可以容易减小到单个阻抗。