图5: 电荷泵整流器
硅整流二极管天线
用来收集射频能量的装置称为直入式收集器。它指的是整流天线。射频能量转换成直流能量。一个典型的直肌有一个天线,匹配电路和一个整流器。
硅整流二极管天线是放置在天线馈电点的天线和肖特基二极管的混合物。它直接将射频信号转换为直流信号。可以使用不同的拓扑作为直肌的组成部分。针对 RF-DC 整流器的设计开发了不同的拓扑结构,如电荷泵整流器、差动驱动桥整流器和门交叉连接差动驱动桥整流器。
电荷泵整流器
图4所示的电荷泵整流器,也称为多倍压器电路,已广泛应用于微型电源收集电路。常规电荷泵整流器的基本结构是在1976年提出的,最初用作 DC-DC 上变换器。
在射频-直流整流器应用中,采用射频输入作为互补时钟信号之一,接地另一条时钟线和直流输入线。为了理解整流器的工作原理,首先考虑乘法器的前两个阶段,也通常被称为倍压器。
操作可以分为两个周期: 负半周期(输入射频信号为负值)和正半周期(输入射频信号为正值)。
假设,二极管的阈值电压为 VT,输入 RF 信号的振幅为 VRF。在第一个负半周期中,引入 d1并将电荷转移到 c1的右端板上。在第一个负半周期结束时,c1充电到 VRF-vt。
当正半周期开始时,d1是反偏的,c1的右端板被推到2 * (VRF-VT)。D2开启,电荷转移到 C2。在正半周期结束时,c2被充电到2 * (VRF-VT) ,用于更多阶段倍频整流器。
差动驱动桥式整流器
全波桥式整流器,如图4所示,已经常用于交直流电压转换。整流器具有差分输入射频信号。
在正半周期的射频信号,二极管 d2和 d3导电,而 d1和 d4是反偏的。
在负半周期的射频信号,二极管 d1和 d4导电,而 d2和 d3是反偏的。
在整个循环中,负载电容器 c1是单向充电的。当考虑反向泄漏电流和其他阻性负载时,c1上的直流电压可以达到 VRF-(2 * Vth) ,其中 Vth 是二极管的阈值电压。
电路开始整流一次,输入交流信号的幅度变大,大于二极管阈值电压的两倍,从而降低了整流器的电压灵敏度。为了提高电压灵敏度,可以用栅漏连接的 n 型金属氧化物
半导体场效应晶体管(MOSFET)或栅源连接的低阈值 p 型 MOSFET 代替二极管,如图6(b)所示。为了提高直流电压水平,采用耦合电容器阻断直流,分阶段级联单元桥式整流器的叠加结构。
栅交联差动驱动桥式整流器
虽然采用二极管连接的低阈值 MOSFET,可以有效地提高桥式整流器的电压灵敏度,但 MOSFET 引起的反向漏电功耗不容忽视。
常规桥式整流器的一种适应结构是用差分输入射频信号偏置门极。通过偏置栅极,降低了 MOSFET 的导通电压,有效地提高了电压灵敏度。
以图7(a)中的结构为例。在正半周期的 RF 信号中,如同在正常的桥式整流器中,m2和 m3导电,而 m1和 m4则是反向偏置的。这种变化发生在 m1和 m3栅极端的偏置电压上。
在正半周期中,m3像传统的桥式整流器一样,带有大于零的偏置信号(接地电位) ,这减少了 m3的阈值电压,因此提高了电压灵敏度。
图6: 全波桥式整流器
图7: 差动驱动桥
在正半周期中,m1的漏极和源极进行了交换。M1在带负 RF 信号的栅极端反向偏置,该负 RF 信号低于源极端的接地电位。有了这种偏置,m1引起的泄漏电流就大大减小了。
对负半周期也可以进行同样的分析。在 NMOS 栅交叉连接桥式整流器中,只有两个 mosfet 存在差分偏置。
为了进一步提高整流器的性能,改为使用两个 PMOS 器件,如图7(b)所示。在正半周期中,pm2和 nm3呈正相关,nm1和 pm4呈反相关。Pm2栅极端的偏置信号为负值,导致比二极管连接模式的导通电压更小。Pm4交换机的源极和漏极。Pm4的栅极端子偏置于正射频信号中,正射频信号大于源极端子的电位,从而减小了反向漏电流。对负半周期也可以进行同样的分析。
常用的整流器件有 MOS 晶体管 和肖特基二极管。物理结构的差异导致了在应用 RF-DC 整流器设计的缺点和优点。表二总结了这两种设备的优点和缺点。
【新课推荐】45天BMS锂离子电池管理系统设计实战线上特训班 老白新课,课程包含一块板子,老白手把手教学,性价比超高
45天BMS锂离子电池管理系统设计实战线上特训班_
电子发烧友学院
https://t.elecfans.com/topic/449.html
纪客老白新上好课:
45天BMS锂电池系统管理线上特训班招生啦!!!
【录播课程6部+45天线上直播课+BMS电源模块
开发板(成品)】
录播课程如下:(学习资料礼包+全天解答交流群)
1.通用元器件基础系列 ¥399
2.元器件选型 ¥399
3.驱动电路设计大全 ¥399
4.防护电路 ¥299
5.硬件焊接调试 ¥499
6.电源系统分析 ¥599
限时优惠价¥1999