完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
一、TP的硬件连接如下,接口包括i2c、中断pin和reset pin。
二、dts配置如下: &i2c4 { status = "okay"; pinctrl-names = "default"; pinctrl-0 = <&i2c4m0_xfer>; clock-frequency = <400000>; i2c-scl-rising-time-ns = <138>; i2c-scl-falling-time-ns = <4>; ts@40 { compatible = "9tripod,gslx680"; reg = <0x40>; touch-gpio = <&gpio0 RK_PB5 IRQ_TYPE_EDGE_RISING>; reset-gpio = <&gpio0 RK_PB6 GPIO_ACTIVE_LOW>; max-x = <1024>; max-y = <600>; }; }; 三、kernel driver ,c文件和头文件。 /* * drivers/input/touchscreen/gslX680.c * * Copyright (c) 2012 Shanghai Basewin * Guan Yuwei * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tp_suspend.h" #include "gslx680_9tripod.h" //extern unsigned char root_config[32]; static int REPORT_DATA_ANDROID_4_0 = 0; static int is_linux = 1; static int MAX_FINGERS = 10; static int MAX_CONTACTS = 10; //#define GSL_DEBUG //#define GSL_MONITOR //#define HAVE_TOUCH_KEY //#define SLEEP_CLEAR_POINT //#define FILTER_POINT #ifdef FILTER_POINT #define FILTER_MAX 9 #endif #define GSLX680_I2C_NAME "gslX680" #define GSLX680_I2C_ADDR 0x40 #define IRQ_PORT PB_PIO_IRQ(CFG_IO_TOUCH_PENDOWN_DETECT)//IRQ_EINT(8) #define GSL_DATA_REG 0x80 #define GSL_STATUS_REG 0xe0 #define GSL_PAGE_REG 0xf0 #define PRESS_MAX 255 #define GPIO_LOW 0 #define GPIO_HIGH 1 #define DMA_TRANS_LEN 0x20 #ifdef GSL_MONITOR static struct delayed_work gsl_monitor_work; static struct workqueue_struct *gsl_monitor_workqueue = NULL; static u8 int_1st[4] = {0}; static u8 int_2nd[4] = {0}; static char dac_counter = 0; static char b0_counter = 0; static char bc_counter = 0; static char i2c_lock_flag = 0; #endif static struct gsl_ts *gts; static struct i2c_client *gsl_client = NULL; #ifdef HAVE_TOUCH_KEY static u16 key = 0; static int key_state_flag = 0; struct key_data { u16 key; u16 x_min; u16 x_max; u16 y_min; u16 y_max; }; const u16 key_array[]={ KEY_BACK, KEY_HOME, KEY_MENU, KEY_SEARCH, }; #define MAX_KEY_NUM (sizeof(key_array)/sizeof(key_array[0])) struct key_data gsl_key_data[MAX_KEY_NUM] = { {KEY_BACK, 2048, 2048, 2048, 2048}, {KEY_HOME, 2048, 2048, 2048, 2048}, {KEY_MENU, 2048, 2048, 2048, 2048}, {KEY_SEARCH, 2048, 2048, 2048, 2048}, }; #endif struct gsl_ts_data { u8 x_index; u8 y_index; u8 z_index; u8 id_index; u8 touch_index; u8 data_reg; u8 status_reg; u8 data_size; u8 touch_bytes; u8 update_data; u8 touch_meta_data; u8 finger_size; }; static struct gsl_ts_data devices[] = { { .x_index = 6, .y_index = 4, .z_index = 5, .id_index = 7, .data_reg = GSL_DATA_REG, .status_reg = GSL_STATUS_REG, .update_data = 0x4, .touch_bytes = 4, .touch_meta_data = 4, .finger_size = 70, }, }; struct gsl_ts { struct i2c_client *client; struct input_dev *input; struct work_struct work; struct workqueue_struct *wq; struct gsl_ts_data *dd; u8 *touch_data; u8 device_id; int irq; int irq_pin; int rst_pin; int rst_val; struct work_struct resume_work; }; #ifdef GSL_DEBUG #define print_info(fmt, args...) do{ printk(fmt, ##args); }while(0) #else #define print_info(fmt, args...) #endif static u32 id_sign[10+1] = {0}; static u8 id_state_flag[10+1] = {0}; static u8 id_state_old_flag[10+1] = {0}; static u16 x_old[10+1] = {0}; static u16 y_old[10+1] = {0}; static u16 x_new = 0; static u16 y_new = 0; static int gslX680_init(void) { /* shutdown pin */ gpio_request(gts->rst_pin, "reset-gpio"); mdelay(5); if (gpio_is_valid(gts->rst_pin)) { gpio_set_value(gts->rst_pin,GPIO_LOW); } mdelay(50); if (gpio_is_valid(gts->rst_pin)) { gpio_set_value(gts->rst_pin,GPIO_HIGH); } mdelay(5); /* config interrupt pin */ return 0; } static int gslX680_shutdown_low(void) { if (gpio_is_valid(gts->rst_pin)) { gpio_set_value(gts->rst_pin,GPIO_LOW); } return 0; } static int gslX680_shutdown_high(void) { if (gpio_is_valid(gts->rst_pin)) { gpio_set_value(gts->rst_pin,GPIO_HIGH); } return 0; } static inline u16 join_bytes(u8 a, u8 b) { u16 ab = 0; ab = ab | a; ab = ab << 8 | b; return ab; } #if 0 static u32 gsl_read_interface(struct i2c_client *client, u8 reg, u8 *buf, u32 num) { struct i2c_msg xfer_msg[2]; xfer_msg[0].addr = client->addr; xfer_msg[0].len = 1; xfer_msg[0].flags = client->flags & I2C_M_TEN; xfer_msg[0].buf = ® xfer_msg[1].addr = client->addr; xfer_msg[1].len = num; xfer_msg[1].flags |= I2C_M_RD; xfer_msg[1].buf = buf; if (reg < 0x80) { i2c_transfer(client->adapter, xfer_msg, ARRAY_SIZE(xfer_msg)); msleep(5); } return i2c_transfer(client->adapter, xfer_msg, ARRAY_SIZE(xfer_msg)) == ARRAY_SIZE(xfer_msg) ? 0 : -EFAULT; } #endif static u32 gsl_write_interface(struct i2c_client *client, const u8 reg, u8 *buf, u32 num) { struct i2c_msg xfer_msg[1]; buf[0] = reg; xfer_msg[0].addr = client->addr; xfer_msg[0].len = num + 1; xfer_msg[0].flags = client->flags & I2C_M_TEN; xfer_msg[0].buf = buf; return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT; } static int gsl_ts_write(struct i2c_client *client, u8 addr, u8 *pdata, int datalen) { int ret = 0; u8 tmp_buf[128]; unsigned int bytelen = 0; if (datalen > 125) { printk("%s too big datalen = %d!n", __func__, datalen); return -1; } tmp_buf[0] = addr; bytelen++; if (datalen != 0 && pdata != NULL) { memcpy(&tmp_buf[bytelen], pdata, datalen); bytelen += datalen; } ret = i2c_master_send(client, tmp_buf, bytelen); return ret; } int gsl_ts_readbyte(struct i2c_client *client, u8 addr, u8 *pdata) { int ret = 0; ret = gsl_ts_write(client, addr, NULL, 0); if (ret < 0) { printk("%s set data address fail!n", __func__); return ret; } return i2c_master_recv(client, pdata, 1); } static int gsl_ts_read(struct i2c_client *client, u8 addr, u8 *pdata, unsigned int datalen) { int ret = 0; int i = 0; if (datalen > 126) { printk("%s too big datalen = %d!n", __func__, datalen); return -1; } for(i=0; i if(ret < 0) return ret; } return ret; } static __inline__ void fw2buf(u8 *buf, const u32 *fw) { u32 *u32_buf = (int *)buf; *u32_buf = *fw; } static void gsl_load_fw(struct i2c_client *client) { u8 buf[DMA_TRANS_LEN*4 + 1] = {0}; u8 send_flag = 1; u8 *cur = buf + 1; u32 source_line = 0; u32 source_len; struct fw_data *ptr_fw; //printk("=============gsl_load_fw start==============n"); ptr_fw = GSLX680_FW; source_len = ARRAY_SIZE(GSLX680_FW); for (source_line = 0; source_line < source_len; source_line++) { /* init page trans, set the page val */ if (GSL_PAGE_REG == ptr_fw[source_line].offset) { fw2buf(cur, &ptr_fw[source_line].val); gsl_write_interface(client, GSL_PAGE_REG, buf, 4); send_flag = 1; } else { if (1 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) buf[0] = (u8)ptr_fw[source_line].offset; fw2buf(cur, &ptr_fw[source_line].val); cur += 4; if (0 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) { gsl_write_interface(client, buf[0], buf, cur - buf - 1); cur = buf + 1; } send_flag++; } } printk("=============gsl_load_fw end==============n"); } static int test_i2c(struct i2c_client *client) { u8 buf; buf = 0x12; if(gsl_ts_write(client, 0xf0, &buf, 1) < 0) return -1; buf = 0x00; if(gsl_ts_read(client, 0xf0, &buf, 1) < 0) return -1; if(buf == 0x12) return 0; return -1; } static void startup_chip(struct i2c_client *client) { u8 tmp = 0x00; #ifdef GSL_NOID_VERSION gsl_DataInit(gsl_config_data_id); #endif gsl_ts_write(client, 0xe0, &tmp, 1); //msleep(10); } static void reset_chip(struct i2c_client *client) { u8 tmp = 0x88; u8 buf[4] = {0x00}; gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp)); msleep(20); tmp = 0x04; gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp)); msleep(10); gsl_ts_write(client, 0xbc, buf, sizeof(buf)); msleep(10); } static void clr_reg(struct i2c_client *client) { u8 write_buf[4] = {0}; write_buf[0] = 0x88; gsl_ts_write(client, 0xe0, &write_buf[0], 1); //msleep(20); write_buf[0] = 0x03; gsl_ts_write(client, 0x80, &write_buf[0], 1); //msleep(5); write_buf[0] = 0x04; gsl_ts_write(client, 0xe4, &write_buf[0], 1); //msleep(5); write_buf[0] = 0x00; gsl_ts_write(client, 0xe0, &write_buf[0], 1); //msleep(20); } static int init_chip(struct i2c_client *client) { int rc; gslX680_shutdown_low(); msleep(20); gslX680_shutdown_high(); msleep(20); rc = test_i2c(client); if(rc < 0) return -1; clr_reg(client); reset_chip(client); gsl_load_fw(client); startup_chip(client); reset_chip(client); startup_chip(client); return 0; } #if 0 static void check_mem_data(struct i2c_client *client) { u8 read_buf[4] = {0}; //msleep(30); gsl_ts_read(client,0xb0, read_buf, sizeof(read_buf)); if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a) { printk("#########check mem read 0xb0 = %x %x %x %x #########n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip(client); } } #endif #ifdef FILTER_POINT |
|
|
|
static void filter_point(u16 x, u16 y , u8 id)
{ u16 x_err =0; u16 y_err =0; u16 filter_step_x = 0, filter_step_y = 0; id_sign[id] = id_sign[id] + 1; if(id_sign[id] == 1) { x_old[id] = x; y_old[id] = y; } x_err = x > x_old[id] ? (x -x_old[id]) : (x_old[id] - x); y_err = y > y_old[id] ? (y -y_old[id]) : (y_old[id] - y); if( (x_err > FILTER_MAX && y_err > FILTER_MAX/3) || (x_err > FILTER_MAX/3 && y_err > FILTER_MAX) ) { filter_step_x = x_err; filter_step_y = y_err; } else { if(x_err > FILTER_MAX) filter_step_x = x_err; if(y_err> FILTER_MAX) filter_step_y = y_err; } if(x_err <= 2*FILTER_MAX && y_err <= 2*FILTER_MAX) { filter_step_x >>= 2; filter_step_y >>= 2; } else if(x_err <= 3*FILTER_MAX && y_err <= 3*FILTER_MAX) { filter_step_x >>= 1; filter_step_y >>= 1; } else if(x_err <= 4*FILTER_MAX && y_err <= 4*FILTER_MAX) { filter_step_x = filter_step_x*3/4; filter_step_y = filter_step_y*3/4; } x_new = x > x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] - filter_step_x); y_new = y > y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] - filter_step_y); x_old[id] = x_new; y_old[id] = y_new; } #else static void record_point(u16 x, u16 y , u8 id) { u16 x_err =0; u16 y_err =0; id_sign[id]=id_sign[id]+1; if(id_sign[id]==1){ x_old[id]=x; y_old[id]=y; } x = (x_old[id] + x)/2; y = (y_old[id] + y)/2; if(x>x_old[id]){ x_err=x -x_old[id]; } else{ x_err=x_old[id]-x; } if(y>y_old[id]){ y_err=y -y_old[id]; } else{ y_err=y_old[id]-y; } if( (x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3) ){ x_new = x; x_old[id] = x; y_new = y; y_old[id] = y; } else{ if(x_err > 3){ x_new = x; x_old[id] = x; } else x_new = x_old[id]; if(y_err> 3){ y_new = y; y_old[id] = y; } else y_new = y_old[id]; } if(id_sign[id]==1){ x_new= x_old[id]; y_new= y_old[id]; } } #endif #ifdef HAVE_TOUCH_KEY static void report_key(struct gsl_ts *ts, u16 x, u16 y) { u16 i = 0; for(i = 0; i < MAX_KEY_NUM; i++) { if((gsl_key_data.x_min < x) && (x < gsl_key_data.x_max)&&(gsl_key_data.y_min < y) && (y < gsl_key_data.y_max)) { key = gsl_key_data.key; input_report_key(ts->input, key, 1); input_sync(ts->input); key_state_flag = 1; break; } } } #endif static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id) { swap(x, y); //print_info("#####id=%d,x=%d,y=%d######n",id,x,y); if(x > SCREEN_MAX_X || y > SCREEN_MAX_Y) { #ifdef HAVE_TOUCH_KEY report_key(ts,x,y); #endif return; } if(is_linux > 0) { input_report_abs(ts->input, ABS_X, x); input_report_abs(ts->input, ABS_Y, y); if(pressure != 0) input_report_key(ts->input, BTN_TOUCH, 1); else input_report_key(ts->input, BTN_TOUCH, 0); input_sync(ts->input); } else { input_report_abs(ts->input, ABS_MT_PRESSURE, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, 1); input_report_abs(ts->input, ABS_MT_POSITION_X, x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_mt_sync(ts->input); } } static void gslX680_ts_worker(struct work_struct *work) { struct gsl_ts *ts = container_of(work, struct gsl_ts,work); int rc, i; u8 id, touches; u16 x, y; #ifdef GSL_NOID_VERSION u32 tmp1; u8 buf[4] = {0}; struct gsl_touch_info cinfo; memset(&cinfo, 0, sizeof(struct gsl_touch_info)); #endif print_info("=====gslX680_ts_worker=====n"); #ifdef GSL_MONITOR if(i2c_lock_flag != 0) goto i2c_lock_schedule; else i2c_lock_flag = 1; #endif rc = gsl_ts_read(ts->client, 0x80, &ts->touch_data[0], 4); if (rc < 0) { dev_err(&ts->client->dev, "read failedn"); goto schedule; } touches = ts->touch_data[ts->dd->touch_index]; if(touches > 0) gsl_ts_read(ts->client, 0x84, &ts->touch_data[4], 4); if(touches > 1) gsl_ts_read(ts->client, 0x88, &ts->touch_data[8], 4); if(touches > 2) gsl_ts_read(ts->client, 0x8c, &ts->touch_data[12], 4); if(touches > 3) gsl_ts_read(ts->client, 0x90, &ts->touch_data[16], 4); if(touches > 4) gsl_ts_read(ts->client, 0x94, &ts->touch_data[20], 4); if(touches > 5) gsl_ts_read(ts->client, 0x98, &ts->touch_data[24], 4); if(touches > 6) gsl_ts_read(ts->client, 0x9c, &ts->touch_data[28], 4); if(touches > 7) gsl_ts_read(ts->client, 0xa0, &ts->touch_data[32], 4); if(touches > 8) gsl_ts_read(ts->client, 0xa4, &ts->touch_data[36], 4); if(touches > 9) gsl_ts_read(ts->client, 0xa8, &ts->touch_data[40], 4); print_info("-----touches: %d -----n", touches); #ifdef GSL_NOID_VERSION cinfo.finger_num = touches; print_info("tp-gsl finger_num = %dn",cinfo.finger_num); for(i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i ++) { cinfo.x = join_bytes( ( ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); cinfo.y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i ]); cinfo.id = ((ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf0)>>4); print_info("tp-gsl before: x[%d] = %d, y[%d] = %d, id[%d] = %d n",i,cinfo.x,i,cinfo.y,i,cinfo.id); } cinfo.finger_num=(ts->touch_data[3]<<24)|(ts->touch_data[2]<<16) |(ts->touch_data[1]<<8)|(ts->touch_data[0]); gsl_alg_id_main(&cinfo); tmp1=gsl_mask_tiaoping(); print_info("[tp-gsl] tmp1=%xn",tmp1); if(tmp1>0&&tmp1<0xffffffff) { buf[0]=0xa;buf[1]=0;buf[2]=0;buf[3]=0; gsl_ts_write(ts->client,0xf0,buf,4); buf[0]=(u8)(tmp1 & 0xff); buf[1]=(u8)((tmp1>>8) & 0xff); buf[2]=(u8)((tmp1>>16) & 0xff); buf[3]=(u8)((tmp1>>24) & 0xff); print_info("tmp1=%08x,buf[0]=%02x,buf[1]=%02x,buf[2]=%02x,buf[3]=%02xn", tmp1,buf[0],buf[1],buf[2],buf[3]); gsl_ts_write(ts->client,0x8,buf,4); } touches = cinfo.finger_num; #endif for(i = 1; i <= MAX_CONTACTS; i ++) { if(touches == 0) id_sign = 0; id_state_flag = 0; } for(i= 0;i < (touches > MAX_FINGERS ? MAX_FINGERS : touches);i ++) { #ifdef GSL_NOID_VERSION id = cinfo.id; x = cinfo.x; y = cinfo.y; #else x = join_bytes( ( ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i ]); id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4; #endif if(1 <=id && id <= MAX_CONTACTS) { #ifdef FILTER_POINT filter_point(x, y ,id); #else record_point(x, y , id); #endif report_data(ts, x_new, y_new, 10, id); id_state_flag[id] = 1; } } for(i = 1; i <= MAX_CONTACTS; i ++) { if( (0 == touches) || ((0 != id_state_old_flag) && (0 == id_state_flag)) ) { if(REPORT_DATA_ANDROID_4_0 > 0) { input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, 0); input_mt_sync(ts->input); } if(is_linux > 0) { report_data(ts, x_new, y_new, 0, i); } id_sign=0; } id_state_old_flag = id_state_flag; } if(0 == touches) { if(REPORT_DATA_ANDROID_4_0 > 0) input_mt_sync(ts->input); #ifdef HAVE_TOUCH_KEY if(key_state_flag) { input_report_key(ts->input, key, 0); input_sync(ts->input); key_state_flag = 0; } #endif } input_sync(ts->input); schedule: #ifdef GSL_MONITOR i2c_lock_flag = 0; i2c_lock_schedule: #endif enable_irq(ts->irq); } #ifdef GSL_MONITOR static void gsl_monitor_worker(void) { u8 write_buf[4] = {0}; u8 read_buf[4] = {0}; char init_chip_flag = 0; print_info("----------------gsl_monitor_worker-----------------n"); if(i2c_lock_flag != 0) goto queue_monitor_work; else i2c_lock_flag = 1; gsl_ts_read(gsl_client, 0xb0, read_buf, 4); if(read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a) b0_counter ++; else b0_counter = 0; if(b0_counter > 1) { printk("======read 0xb0: %x %x %x %x ======n",read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip_flag = 1; b0_counter = 0; goto queue_monitor_init_chip; } gsl_ts_read(gsl_client, 0xb4, read_buf, 4); int_2nd[3] = int_1st[3]; int_2nd[2] = int_1st[2]; int_2nd[1] = int_1st[1]; int_2nd[0] = int_1st[0]; int_1st[3] = read_buf[3]; int_1st[2] = read_buf[2]; int_1st[1] = read_buf[1]; int_1st[0] = read_buf[0]; if(int_1st[3] == int_2nd[3] && int_1st[2] == int_2nd[2] &&int_1st[1] == int_2nd[1] && int_1st[0] == int_2nd[0]) { printk("======int_1st: %x %x %x %x , int_2nd: %x %x %x %x ======n",int_1st[3], int_1st[2], int_1st[1], int_1st[0], int_2nd[3], int_2nd[2],int_2nd[1],int_2nd[0]); init_chip_flag = 1; goto queue_monitor_init_chip; } #if 1 //version 1.4.0 or later than 1.4.0 read 0xbc for esd checking gsl_ts_read(gsl_client, 0xbc, read_buf, 4); if(read_buf[3] != 0 || read_buf[2] != 0 || read_buf[1] != 0 || read_buf[0] != 0) bc_counter++; else bc_counter = 0; if(bc_counter > 1) { printk("======read 0xbc: %x %x %x %x======n",read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip_flag = 1; bc_counter = 0; } #else write_buf[3] = 0x01; write_buf[2] = 0xfe; write_buf[1] = 0x10; write_buf[0] = 0x00; gsl_ts_write(gsl_client, 0xf0, write_buf, 4); gsl_ts_read(gsl_client, 0x10, read_buf, 4); gsl_ts_read(gsl_client, 0x10, read_buf, 4); if(read_buf[3] < 10 && read_buf[2] < 10 && read_buf[1] < 10 && read_buf[0] < 10) dac_counter ++; else dac_counter = 0; if(dac_counter > 1) { printk("======read DAC1_0: %x %x %x %x ======n",read_buf[3], read_buf[2], read_buf[1], read_buf[0]); init_chip_flag = 1; dac_counter = 0; } #endif queue_monitor_init_chip: if(init_chip_flag) init_chip(gsl_client); i2c_lock_flag = 0; queue_monitor_work: queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 100); } #endif static irqreturn_t gsl_ts_irq(int irq, void *dev_id) { struct gsl_ts *ts = dev_id; //print_info("========gslX680 Interrupt=========n"); //printk("isrn"); disable_irq_nosync(ts->irq); if (!work_pending(&ts->work)) { queue_work(ts->wq, &ts->work); } return IRQ_HANDLED; } static int gslX680_ts_init(struct i2c_client *client, struct gsl_ts *ts) { struct input_dev *input_device; int rc = 0; printk("[GSLX680] Enter %sn", __func__); ts->dd = &devices[ts->device_id]; if (ts->device_id == 0) { ts->dd->data_size = MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data; ts->dd->touch_index = 0; } ts->touch_data = kzalloc(ts->dd->data_size, GFP_KERNEL); if (!ts->touch_data) { pr_err("%s: Unable to allocate memoryn", __func__); return -ENOMEM; } input_device = input_allocate_device(); if (!input_device) { rc = -ENOMEM; goto error_alloc_dev; } |
|
|
|
ts->input = input_device;
input_device->name = GSLX680_I2C_NAME; input_device->id.bustype = BUS_I2C; input_device->dev.parent = &client->dev; input_set_drvdata(input_device, ts); set_bit(EV_ABS, input_device->evbit); // __set_bit(INPUT_PROP_DIRECT, input_device->propbit); // input_mt_init_slots(input_device, (MAX_CONTACTS + 1)); if(is_linux > 0) { set_bit(BTN_TOUCH, input_device->keybit); set_bit(EV_ABS, input_device->evbit); set_bit(EV_KEY, input_device->evbit); input_set_abs_params(input_device, ABS_X, 0, SCREEN_MAX_X, 0, 0); input_set_abs_params(input_device, ABS_Y, 0, SCREEN_MAX_Y, 0, 0); } else { input_set_abs_params(input_device,ABS_MT_POSITION_X, 0, SCREEN_MAX_X, 0, 0); input_set_abs_params(input_device,ABS_MT_POSITION_Y, 0, SCREEN_MAX_Y, 0, 0); input_set_abs_params(input_device,ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0, 0); input_set_abs_params(input_device, ABS_MT_PRESSURE, 0, 255, 0, 0); } #ifdef HAVE_TOUCH_KEY input_device->evbit[0] = BIT_MASK(EV_KEY); //input_device->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); for (i = 0; i < MAX_KEY_NUM; i++) set_bit(key_array, input_device->keybit); #endif // client->irq = IRQ_PORT; ts->irq = client->irq; ts->wq = create_singlethread_workqueue("kworkqueue_ts"); if (!ts->wq) { dev_err(&client->dev, "Could not create workqueuen"); goto error_wq_create; } flush_workqueue(ts->wq); INIT_WORK(&ts->work, gslX680_ts_worker); rc = input_register_device(input_device); if (rc) goto error_unreg_device; return 0; error_unreg_device: destroy_workqueue(ts->wq); error_wq_create: input_free_device(input_device); error_alloc_dev: kfree(ts->touch_data); return rc; } static void gs_ts_work_resume(struct work_struct *work) { struct gsl_ts *ts = container_of(work, struct gsl_ts,resume_work); init_chip(ts->client); #ifdef GSL_MONITOR printk( "gsl_ts_resume () : queue gsl_monitor_workn"); queue_work(gsl_monitor_workqueue, &gsl_monitor_work.work); #endif enable_irq(ts->irq); } static int gsl_ts_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct gsl_ts *ts; int rc; struct device_node *np = client->dev.of_node; enum of_gpio_flags rst_flags; unsigned long irq_flags; int ret = 0; //printk("GSLX680 Enter %sn", __func__); if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "I2C functionality not supportedn"); return -ENODEV; } ts = kzalloc(sizeof(*ts), GFP_KERNEL); if (!ts) return -ENOMEM; printk("==kzalloc success=n"); ts->client = client; i2c_set_clientdata(client, ts); ts->device_id = 0;//id->driver_data; ts->irq_pin = of_get_named_gpio_flags(np, "touch-gpio", 0, (enum of_gpio_flags *)&irq_flags); ts->rst_pin = of_get_named_gpio_flags(np, "reset-gpio", 0, &rst_flags); if (gpio_is_valid(ts->rst_pin)) { ts->rst_val = (rst_flags & OF_GPIO_ACTIVE_LOW) ? 0 : 1; ret = devm_gpio_request_one(&client->dev, ts->rst_pin, (rst_flags & OF_GPIO_ACTIVE_LOW) ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, "goodix reset pin"); if (ret != 0) { dev_err(&client->dev, "goodix gpio_request errorn"); return -EIO; } gpio_direction_output(ts->rst_pin, 0); gpio_set_value(ts->rst_pin,GPIO_HIGH); msleep(20); } else { dev_info(&client->dev, "reset pin invalidn"); } gts = ts; rc = gslX680_ts_init(client, ts); if (rc < 0) { dev_err(&client->dev, "GSLX680 init failedn"); goto error_mutex_destroy; } gsl_client = client; gslX680_init(); if(init_chip(ts->client) < 0) return -1; ts->irq=gpio_to_irq(ts->irq_pin); if (ts->irq) { rc= request_irq(ts->irq, gsl_ts_irq, IRQF_TRIGGER_RISING, client->name, ts); if (rc != 0) { printk(KERN_ALERT "Cannot allocate ts INT!ERRNO:%dn", ret); goto error_req_irq_fail; } } /* create debug attribute */ //rc = device_create_file(&ts->input->dev, &dev_attr_debug_enable); #ifdef GSL_MONITOR printk( "gsl_ts_probe () : queue gsl_monitor_workqueuen"); INIT_DELAYED_WORK(&gsl_monitor_work, gsl_monitor_worker); gsl_monitor_workqueue = create_singlethread_workqueue("gsl_monitor_workqueue"); queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 1000); #endif device_enable_async_suspend(&client->dev); INIT_WORK(&ts->resume_work, gs_ts_work_resume); printk("[GSLX680] End %sn", __func__); return 0; //exit_set_irq_mode: error_req_irq_fail: free_irq(ts->irq, ts); error_mutex_destroy: input_free_device(ts->input); kfree(ts); return rc; } static int gsl_ts_remove(struct i2c_client *client) { struct gsl_ts *ts = i2c_get_clientdata(client); printk("==gsl_ts_remove=n"); #ifdef GSL_MONITOR cancel_delayed_work_sync(&gsl_monitor_work); destroy_workqueue(gsl_monitor_workqueue); #endif device_init_wakeup(&client->dev, 0); cancel_work_sync(&ts->work); free_irq(ts->irq, ts); destroy_workqueue(ts->wq); input_unregister_device(ts->input); //device_remove_file(&ts->input->dev, &dev_attr_debug_enable); kfree(ts->touch_data); kfree(ts); gpio_free(gts->rst_pin); //hdc 20150129 return 0; } static const struct i2c_device_id gsl_ts_id[] = { {GSLX680_I2C_NAME, 0}, {} }; MODULE_DEVICE_TABLE(i2c, gsl_ts_id); static struct of_device_id goodix_ts_dt_ids[] = { { .compatible = "9tripod,gslx680" }, { } }; static struct i2c_driver gsl_ts_driver = { .driver = { .name = GSLX680_I2C_NAME, .owner = THIS_MODULE, .of_match_table = of_match_ptr(goodix_ts_dt_ids), }, .probe = gsl_ts_probe, .remove = gsl_ts_remove, .id_table = gsl_ts_id, }; static int __init gsl_ts_init(void) { int ret; /* if(strcasecmp(root_config, "default") == 0) { printk("Initial gslx680 Touch Drivern"); REPORT_DATA_ANDROID_4_0 = 1; is_linux = 0; MAX_FINGERS = 10; MAX_CONTACTS = 10; } else*/ { printk("Initial gslx680 linux Touch Drivern"); REPORT_DATA_ANDROID_4_0 = 0; is_linux = 1; MAX_FINGERS = 1; MAX_CONTACTS = 1; } ret = i2c_add_driver(&gsl_ts_driver); return ret; } static void __exit gsl_ts_exit(void) { printk("==gsl_ts_exit==n"); i2c_del_driver(&gsl_ts_driver); return; } module_init(gsl_ts_init); module_exit(gsl_ts_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GSLX680 touchscreen controller driver"); MODULE_AUTHOR("Guan Yuwei, guanyuwei@basewin.com"); MODULE_ALIAS("platform:gsl_ts"); 四、读取触摸板 ic 的触控层,可以发现有的触控屏是读不出来的,i2c 有相应的信号。getevent 五、触控到adb 的屏幕上是否收到了 这里的信号。可以确认屏幕触控屏幕显示,但是这个时候又发现了一个问题,触摸键盘一样,在屏幕上移动时,屏幕上显示了类似的操作、操作 、触控设备(输入设备文件(输入设备配置文件),特别是gslX680.idc,复制到/system/usr/idc/路径下。 3、gslX680.idc 内容如下: touch.deviceType = touchScreen touch.orientationAware = 1 4、adb dumpsys input 可以看到满足的文件文件 |
|
|
|
你正在撰写答案
如果你是对答案或其他答案精选点评或询问,请使用“评论”功能。
基于米尔瑞芯微RK3576核心板/开发板的人脸疲劳检测应用方案
1760 浏览 0 评论
2096 浏览 1 评论
1771 浏览 1 评论
3106 浏览 1 评论
4025 浏览 1 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-11 03:39 , Processed in 0.415852 second(s), Total 41, Slave 36 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号