第1章 概述
1.1 人工神经网络研究与发展
1.2 生物神经元
1.3 人工神经网络的构成
第2章人工神经网络基本模型
2.1 MP模型
2.2 感知器模型
2.3 自适应线性神经元
第3章 EBP网络(反向传播算法)
3.1 含隐层的前馈网络的学习规则
3.2 Sigmoid激发函数下的BP算法
3.3 BP网络的训练与测试
3.4 BP算法的改进
3.5 多层网络BP算法的程序设计
多层前向网络BP算法源程序
第4章 Hopfield网络模型
4.1 离散型Hopfield神经网络
4.2 连续型Hopfield神经网络
Hopfield网络模型源程序
4.3 旅行商问题(TSP)的HNN求解
Hopfield模型求解TSP源程序
第5章 随机型神经网络
5.1 模拟退火算法
5.2 Boltzmann机
Boltzmann机模型源程序
5.3 Gaussian机
第6章自组织神经网络
6.1 竞争型学习
6.2 自适应共振理论(ART)模型
6.3 自组织特征映射(SOM)模型
6.4 CPN模型
第7章 联想记忆神经网络
7.1 联想记忆基本特点
7.2 线性联想记忆LAM模型
7.3 双向联想记忆BAM模型
7.4 时间联想记忆TAM模型
Hopfield模型联想记忆源程序
第8章 CMAC模型
8.1 CMAC模型
8.2 CMAC映射算法
8.3 CMAC的输出计算
8.4 CMAC控制器模型
7
|
|
|
|
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
|
|
|
|
|
一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。
|
|
|
|
|
神经网络的研究内容相当广泛,反映了多学科交叉威廉希尔官方网站
领域的特点。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为威廉希尔官方网站
模型研究。
|
|
|
|
|
学习。。。。。。。。。。。。。。。。。。。。。。。。
|
|
|
|
|
有没有例子什么的啊
|
|
|
|
|
看目录不错的资料,想要学习一下,也和大家多交流心得
|
|
|
|
|