电容选形时需要考虑的因素很多,以下两篇文章专门探讨了MLCC、铝电解这两种最常用的 电容的选形要素。 1. MLCC 选型:仅仅满足参数还远远不够 作者:桂军 电子元件威廉希尔官方网站
网产品需求分析师 购买商品的一般决策逻辑是:能不能用,好不好用,耐不耐用,价格。其实这个逻辑也可以 套用到 MLCC的选型过程中:首先MLCC参数要满足电路要求,其次就是参数与介质是否能让 系统工作在最佳状态;再次,来料 MLCC是否存在不良品,可靠性如何;最后,价格是否有 优势,供应商配合是否及时。许多设计工程师不重视无源元件,以为仅靠理论计算出参数就 行,其实,MLCC 的选型是个复杂的过程,并不是简单的满足参数就可以的。 选型要素 ? 参数:电容值、容差、耐压、使用温度、尺寸 ? 材质 ? 直流偏置效应 ? 失效 ? 价格与供货 不同介质性能决定了 MLCC不同的应用 ? C0G 电容器具有高温度补偿特性,适合作旁路电容和耦合电容 ? X7R 电容器是温度稳定型陶瓷电容器,适合要求不高的工业应用 ? Z5U 电容器特点是小尺寸和低成本,尤其适合应用于去耦电路 ? Y5V 电容器温度特性最差,但容量大,可取代低容铝电解电容 MLCC 常用的有C0G(NP0)、X7R、Z5U、Y5V等不同的介质规格,不同的规格有不同的特点 和用途。C0G、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填 充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也 就不同,所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 C0G(NP0)电容器 C0G 是一种最常用的具有温度补偿特性的MLCC。它的填充介质是由铷、钐和一些其它稀有氧 化物组成的。C0G 电容量和介质损耗最稳定,使用温度范围也最宽,在温度从-55℃到+125 ℃时容量变化为 0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。C0G电容的漂移或滞后 小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿 命的变化小于±0.1%。 //www.obk20.com 电子发烧友 https://bbs.elecfans.com 电子威廉希尔官方网站
论坛 C0G 电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要 比小封装尺寸的频率特性好。C0G电容器适合用于振荡器、谐振器的旁路电容,以及高频电 路中的耦合电容。 X7R 电容器 X7R 电容器被称为温度稳定型陶瓷电容器。X7R电容器温度特性次于C0G,当温度在-55℃到 +125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R 电容器的容量在不同的电压和频率条件下也是不同的,它随时间的变化而变化,大约每 10 年变化1%ΔC,表现为10年变化了约5%。 X7R 电容器主要应用于要求不高的工业应用,并且电压变化时其容量变化在可以接受的范围 内,X7R 的主要特点是在相同的体积下电容量可以做的比较大。 Z5U 电容器 Z5U 电容器称为“通用”陶瓷单片电容器。这里要注意的是Z5U使用温度范围在+10℃到+85 ℃之间,容量变化为+22%到-56%,介质损耗最大为4%。Z5U电容器主要特点是它的小尺寸和 低成本。对于上述两种 MLCC来说在相同的体积下,Z5U电容器有最大的电容量,但它的电 容量受环境和工作条件影响较大,它的老化率也是最大,可达每 10年下降5%。 尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、 良好的频率响应等特点,使其具有广泛的应用范围,尤其是在去耦电路中的应用。 Y5V 电容器 Y5V 电容器是一种有一定温度限制的通用电容器,Y5V介质损耗最大为5%。Y5V材质的电容, 温度特性不强,温度变化会造成容值大幅变化,在-30℃到85℃范围内其容量变化可达+22% 到-82%,Y5V会逐渐被温度特性好的X7R、X5R所取代。 各种不同材质的比较 ? 从 C0G到Y5V,温度特性、可靠性依次递减,成本也依次减低 C0G、X7R、Z5U、Y5V的温度特性、可靠性依次递减,成本也是依次减低的。在选型时,如 果对工作温度和温度系数要求很低,可以考虑用Y5V的,但是一般情况下要用X7R,要求更 高时必须选择 C0G的。一般情况下,MLCC都设计成使X7R、Y5V材质的电容在常温附近的容 量最大,容量相对温度的变化轨迹是开口向下的抛物线,随着温度上升或下降,其容量都会 下降。 并且 C0G、X7R、Z5U 、Y5V介质的介电常数也是依次减少的,所以,同样的尺寸和耐压下, 能够做出来的最大容量也是依次减少的。实际应用中很多公司的开发设计工程师按理论计 //www.obk20.com 电子发烧友 https://bbs.elecfans.com 电子威廉希尔官方网站
论坛 算,而不了解 MLCC厂家的实际生产状况,常常列出一些很少生产甚至不存在的规格,这样 不但造成采购成本上升而且影响交期。比如想用 0603/C0G/25V/3300pF的电容,但是 0603/C0G/25V 的MLCC一般只做到1000pF。 MLCC 替代电解电容 ? Z5U、Y5V MLCC 可取代低容量铝、钽电解电容器 ? 取代电解电容要注意 MLCC温度特性是否合适 ? 英制与公制不能混用 与铝电解电容,钽电容相比,MLCC具有无极、ESR特性值小、高频特性好等优势,而且MLCC 正在朝小体积、大容量化发展,如Y5V可以做到较高的容量,通常1206表面贴装Z5U、Y5V 介质电容器量甚至可以达到 100μF,在某种意义上是取代低容量铝、钽电解电容器的有力 竞争对手,但是也要注意这些电容的尺寸比较大,容易产生裂纹。另外,Y5V 的MLCC最高 温度只有 85度,取代电解电容时要注意温度是否合适。 MLCC 的尺寸是用一组数字来表示,例如0402、0603。表示方法有两种,一种是英制表示法, 一种是公制表示法。美国的厂家用英制,日本厂家基本上都用公制的,而国内厂家有用英制 表示的也有用公制表示的,所以要特别注意规格表中标号对照尺寸的单位是英寸还是毫米。 国内工程师一般习惯使用英制表示,但是也要注意工程师与采购之间要统一认识,要用公制 都用公制,用英制都用英制,避免发生误会,例如说到0603,英制和公制表示里都有0603, 但实际尺寸差别很大。 MLCC 的直流偏置效应 ? 直流偏置效应会引起电容值改变 ? 小尺寸电容取代大尺寸电容不简单 ? 记住向供应商索要系统最常用电压的综合曲线 在选择 MLCC时还必须考虑到它的直流偏置效应。电容选择不正确可能对系统的稳定性造成 严重破坏。直流偏置效应通常出现在铁电电介质(2类)电容中,如X5R、X7R、及Y5V类电容。 设计人员在考虑无源器件时,他们会想到考量电容的容差,这在理论上是对的,陶瓷电容的 容差是在 1 kHz频率、1V rms 或 0.5V rms电压下规定/测试的,但实际应用的条件差异非 常大。在较低的rms电压下,电容额定值要小得多。在某一特定频率下,在一个陶瓷电容上 加直流偏置电压会改变这些元件的特性,故有“有源的无源器件(active passives)”之称。 例如,一个 10μF,0603,6.3V的电容在-30°C下直流偏置1.8V时测量值可能只有4μF。 陶瓷电容的基本计算公式如下: C=K×[(S×n)/t] 这里,C=电容量,K=介电常数,n=介电层层数,S=电极面积,t=介电层厚度 影响直流偏置的因子有介电常数、介电层厚度、额定电压的比例因子,以及材料的晶粒度。 //www.obk20.com 电子发烧友 https://bbs.elecfans.com 电子威廉希尔官方网站
论坛 电容上的电场使内部分子结构产生“极化”,引起 K常数的暂时改变,不幸的是,是变小。 电容的外壳尺寸越小,由直流偏置引起的电容量降量百分比就越大。若外壳尺寸一定,则直 流偏置电压越大,电容量降量百分比也越大。系统设计人员为节省空间用0603电容代替0805 电容时,必须相当谨慎。 因此,请记住应该向厂商索取在应用的预定直流偏置电压下的电容值曲线。电容器生产商往 往喜欢出示单独的曲线,如电容量随温度的变化曲线,另一条是电容量随直流偏置的变化曲 线。不过,他们不会同时给出两条,但实际应用恰恰需要两条。应该记住向生产厂商索要系 统最常用电压的综合曲线。 检测时容量不正常 ? MLCC 的长时间放置会导致特性值的降低 ? 检测方法不当也会引起容量偏差 对于刚入行的采购或者选型工程师来说,可能会经常遇到检测时容量偏差的问题,要么是不 良品,要么是因为MLCC的长时间放置导致特性值的降低,可以使用烧结的方法恢复特性值。 搬运与储存时要注意防潮,Y5V 与X7R产品存放时间太长,容量变化较大。 MLCC 测试容量时,检测方法要正确,容量会因检测设备的不同而有偏差。 MLCC 的失效问题 ? MLCC 在生产中可能出现空洞、裂纹、分层 ? 组装过程中会引起哪些失效? ? 哪些过程会引起失效? ? 有的裂纹很难检测出来 MLCC 内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程 中引入缺陷,则会对其可靠性产生严重影响。例如,MLCC 在生产时可能出现介质空洞、烧 结纹裂、分层等缺陷。分层和空洞、裂纹为重要的 MLCC内在缺陷,这点可以通过筛选优秀 的供应商,并对其产品进行定期抽样检测等来保证。 另一种就是组装时引入的缺陷,缺陷主要来自机械应力和热应力。MLCC 的特点是能够承受 较大的压应力,但抵抗弯曲能力比较差。所以 PCB板的弯曲也容易引起MLCC开裂。由于 MLCC 是长方体,焊端在短边,PCB 发生形变时,长边承受应力大于短边,容易发生裂纹。所以, ? 排板时要考虑 PCB板的变形方向与MLCC的安装方向 ? 在 PCB可能产生较大形变的地方都尽量不要放置电容,比如PCB定位铆接、单板测 试时测试点机械接触等位置都容易产生形变 ? 厚的 PCB板弯曲小于薄的PCB板,所以使用薄PCB板时更要注意形变问题 //www.obk20.com 电子发烧友 https://bbs.elecfans.com 电子威廉希尔官方网站
论坛 常见应力源有:工艺过程中电路板操作;流转过程中的人、设备、重力等因素;通孔元器件 的插入;电路测试、单板分割;电路板安装;电路板定位铆接;螺丝安装等。该类裂纹一般 起源于器件上下金属化端,沿 45℃角向器件内部扩展。该类缺陷也是实际发生最多的一种 类型缺陷。 同样材质、尺寸和耐压下的 MLCC,容量越高,介质层数就越多,每层也越薄,并且相同材 质、容量和耐压时,尺寸小的电容每层介质更薄,越容易断裂。裂纹的危害是漏电,严重时 引起内部层间错位短路等安全问题。裂纹通常可以使用ICT设备完成检测,有的裂纹比较隐 蔽,无法保证 100%的检测效果。 温度冲击裂纹主要由于器件在焊接特别是波峰焊时承受温度冲击所致。焊接时 MLCC受热不 均,容易从焊端开始产生裂纹,大尺寸 MLCC尤其如此。这是因为大尺寸的电容导热没有小 尺寸的好,造成电容受热不均,膨胀幅度不同,从而产生破坏性应力。 另外,在MLCC焊接过后的冷却过程中,MLCC和PCB的膨胀系数不同,也会产生应力导致裂 纹。相对于回流焊,波峰焊时这种失效会大大增加。要避免这个问题,回流焊、波峰焊时需 要有良好的焊接温度曲线,一般器件工艺商都会提供相关的建议曲线。通过组装良品率的积 累和分析,可以得到优化的温度曲线。 2.铝电解电容选型要素探讨 作者:涛声 电子元件威廉希尔官方网站
网助理产品需求分析师 电路系统性能的稳定可靠,与选用的元器件参数、等级、质量等密切相关。设计师应针对产 品应用环境以及电性能的要求,准确提出对元件参数的具体要求,包括标称值、精度和误差 要求、稳定性要求、温度范围要求、安装尺寸以及与电路性能密切相关的其它要求。因在所 有的被动元件中,铝电解电容的失效率最高,所以选型尤为重要。 铝电解电容选型要点: ? 容量,耐压,温度范围,元件封装形式与尺寸 ? 纹波电流、纹波电压 ? 漏电流、ESR、散逸因数、阻抗/频率特性 ? 电容寿命 ? 实际需要、性能和成本等综合考量 电子元件威廉希尔官方网站
网通过调查工程师在铝电解选型和应用中碰到的问题提出,要关注耐压、容量、 温度和尺寸几个参数,也要注意铝电解电容对整个电路的稳定性问题。 铝电解电容是以经过蚀刻的高纯度铝箔作为阳极,以浸有电解液的薄纸或布做阴极构成的极 性电容器。 //www.obk20.com 电子发烧友 https://bbs.elecfans.com 电子威廉希尔官方网站
论坛 优点 ? 容量大 ? 耐压高 ? 价格便宜 缺点 ? 漏电流大 ? 误差大 ? 稳定性差 ? 寿命随温度的升高下降很快 数字电路中使用的铝质电解电容一般用于电源平滑滤波,除容量、耐压、容量误差、工作温 度、封装尺寸等熟知的参数外,还有儿个有关电容器品质的重要参数,包括损耗角正切、漏 电流、等效串联电阻ESR、允许的纹波电流、使用寿命等。这些参数不标在成品封装外皮上, 只在产品规格书中体现的,但这些参数有可能是关系电路性能的关键。 容量和额定工作电压 铝电解电容本体上标有的容量和耐压,这两个参数是很重要,是选用电容最基本的内容。 在实际电容选型中,对电流变化节奏快的地方要用容量较大的电容,但并非容量越大越好, 首先,容量增大,成本和体积可能会上升,另外,电容越大充电电流就越大,充电时间也会 越长。这些都是实际应用选型中要考虑的。 额定工作电压:在规定的工作温度范围内,电容长期可靠地工作,它能承受的最大直流电压。 在交流电路中,要注意所加的交流电压最大值不能超过电容的直流工作电压值。常用的固定 电容工作电压有 6.3V、10V、16V、25V、50V、63V、100V、2500V、400V、500V、630V。电 容在电路中实际要承受的电压不能超过它的耐压值。 在滤波电路中,电容的耐压值不要小于交流有效值的 1.42倍。另外还要注意的一个问题是 工作电压裕量的问题,一般来说要在15%以上。例如某电容的额定电压是50V,虽然涌浪电 压可能高至 63V,但一般最高只会施加42V电压。 让电容器的额定电压具有较多的余裕,能降低内阻、降低漏电流、降低损失角、增加寿命。 虽然说, 48V 的工作电压使用50V的铝电解电容短时间不会出现问题,但使用久了,寿命 就有可能降低。 介质损耗 电容器在电场作用下消耗的能量,通常用损耗功率和电容器的无功功率之比,即损耗角的正 切值表示(在电容器的等效电路中,串联等效电阻 ESR 同容抗 1/ωC 之比称之为 Tan δ, 这里的 ESR 是在 120Hz 下计算获得的值。显然,Tan δ 随着测量频率的增加而变大,随 //www.obk20.com 电子发烧友 https://bbs.elecfans.com 电子威廉希尔官方网站
论坛 测量温度的下降而增大)。损耗角越大,电容器的损耗越大,损耗角大的电容不适于高频情 况下工作。散逸因数 dissipationfactor(DF)存在於所有电容器中,有时DF值会以损失角 tanδ 表示。此参数愈低愈好。但铝电解电容此参数比较高。 DF 值是高还是低,就同一品牌、同一系列的电容器来说,与温度、容量、电压、频率…… 都有关系;当容量相同时,耐压愈高的 DF值就愈低。此外温度愈高DF值愈高,频率愈高 DF 值也会愈高。 外型尺寸 外型尺寸与重量及接脚型态相关。single ended是径向引线式,screw是锁螺丝式,另外还 有贴片铝电解电容等。至於重量,同容量同耐压,但品牌不同的两个电容做比较,重量一定 不同;而外型尺寸更与外壳规划有关。一般来说,直径相同、容量相同的电容,高度低的可 以代用高度大的电容,但是长度高的替代低的电容时就要考虑机构干涉问题。 ESR 一只电容器会因其构造而产生各种阻抗、感抗。ESR等效串联电阻及ESL等效串联电感是一 对重要参数─这就是容抗的基础。一个等效串联电阻(ESR)很小的电容相对较大容量的外 部电容能很好地吸收快速转换时的峰值(纹波)电流。用 ESR 大的电容并联更具成本效益。 然而,这需要在 PCB 面积、器件数目与成本之间寻求折衷。 纹波电流和纹波电压 在有的资料中称作涟波电流和涟波电压,其实就是 ripple current,ripple voltage。含 义就是电容器所能耐受纹波电流/电压值。纹波电压等于纹波电流与ESR的乘积。 当纹波电流增大的时候,即使在 ESR 保持不变的情况下,纹波电压也会成倍提高。换言之, 当纹波电压增大时,纹波电流也随之增大,这也是要求电容具备更低 ESR 值的原因。叠加 入纹波电流后,由于电容内部的等效串连电阻(ESR)引起发热,从而影响到电容器的使用 寿命。一般的,纹波电流与频率成正比,因此低频时纹波电流也比较低。 额定纹波电流是在最高工作温度条件下定义的数值。而实际应用中电容的纹波承受度还跟其 使用环境温度及电容自身温度等级有关。规格书目通常会提供一个在特定温度条件下各温度 等级电容所能够承受的最大纹波电流。甚至提供一个详细图表以帮助使用者迅速查找到在一 定环境温度条件下要达到某期望使用寿命所允许的电容纹波量。 漏电流 电容器的介质对直流电流具有很大的阻碍作用。然而,由于铝氧化膜介质上浸有电解液,在 施加电压时,重新形成的以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流。通 常,漏电流会随着温度和电压的升高而增大。它的计算公式大致是:I=K×CV。漏电流I的 //www.obk20.com 电子发烧友 https://bbs.elecfans.com 电子威廉希尔官方网站
论坛 单位是 μA,K是常数。一般来说,电容器容量愈高,漏电流就愈大。从公式可得知额定电 压愈高,漏电流也愈大,因此降低工作电压亦可降低漏电流。 寿命 首先要明确一点,铝电解电容一定会坏,只是时间问题。影响电容寿命的原因有很多,过电 压,逆电压,高温,急速充放电等等,正常使用的情况下,最大的影响就是温度,因为温度 越高电解液的挥发损耗越快。需要注意的是这里的温度不是指环境或表面温度,是指铝箔工 作温度。厂商通常会将电容寿命和测试温度标注在电容本体。 因电容的工作温度每增高 10℃寿命减半,所以不要以为2000小时寿命的铝电解电容就比 1000 小时的好,要注意确认寿命的测试温度。每个厂商都有温度和寿命的计算公式,在设 计电容时要参照实际数据进行计算。需要了解的是要提高铝电解电容的寿命,第一要降低工 作温度,在 PCB上远离热源,第二考虑使用最高工作温度高的电容,当然价格也会高一些。 阻抗: 在特定的频率下,阻碍交流电流通过的电阻即为所谓的阻抗。它与电容等效电路中的电容值、 电感值密切相关,且与 ESR 也有关系。电容的容抗在低频率范围内随着频率的增加逐步减 小,频率继续增加达到中频范围时电抗降至ESR的值。当频率达到高频范围时感抗变为主导, 所以阻抗是随着频率的增加而增加。 开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数十 kHz,甚至是数十MHz,这 时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗-频率”特性,要求 在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰 信号具有良好的滤波作用。 总结 从表面上来看 DF、漏电流、ESR愈低,纹波电流愈高,铝电解电容性能越好,但是性能提高 的代价是体型的肥大和价格的提高。因此,铝电解电容的选择必须慎重,既要兼顾性能要求, 又要考虑封装尺寸,在设计时一定要针对系统要求,仔细查阅相关的产品手册,认真确定适 宜的型号,并进行实际测试。
1
|
|
|
|