` GAN 是什么?:Generative Adversarial Network
我们可以这样定义:“对抗生成网络(GAN)是一种深度学习模型,模型通过框架中至少两个框架:生成模型和判别模型的互相博弈以学习产生好的输出。”
当然这么说略显抽象,我们不如来看一个有趣的例子:
当爱德华·蒙克碰撞上现实生活中骑车的行人,会产生怎样的火花呢?
(该图片来自大名鼎鼎的风格迁移开创论文:
Image Style Transfer Using Convolutional Neural Networks)
怎么样,效果还不错吧?对抗生成网络在其中就起到了不可忽视的作用。
那就让我们进一步了解神奇的生成对抗网络吧。 GAN 的应用:图像生成,超分辨率任务,图像转化等;当然也可以应用到数据增强方面,对于小数据集,生成数据打上标签能提高训练效果。
下面是一个图像转化的例子:将风景画和油画互相转化,斑马和马互相转化,多天和夏天互相转化,是不是很有趣呢?