完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
|
相关推荐
1个回答
|
|
DMOS与CMOS器件结构类似,也有源、漏、栅等电极,但是漏端击穿电压高。DMOS主要有两种类型,垂直双扩散金属氧化物半导体场效应管VDMOSFET(verTIcal double-diffused MOSFET)和横向双扩散金属氧化物半导体场效应管LDMOSFET(lateral double-dif fused MOSFET)。
LDMOS LDMOS (横向扩散金属氧化物半导体) 结构见图 在高压功率集成电路中常采用高压LDMOS满足耐高压、实现功率控制等方面的要求,常用于射频功率电路。 与晶体管相比,在关键的器件特性方面,如增益、线性度、开关性能、散热性能以及减少级数等方面优势很明显。 LDMOS由于更容易与CMOS工艺兼容而被广泛采用。LDMOS是一种双扩散结构的功率器件。这项威廉希尔官方网站 是 在相同的源/漏区域注入两次,一次注入浓度较大(典型注入剂量 1015cm-2)的砷(As),另一次注入浓度较小(典型剂量1013cm-2)的硼(B)。注入之后再进行一个高温推进过程,由于硼扩散比砷快,所以 在栅极边界下会沿着横向扩散更远(图中P阱),形成一个有浓度梯度的沟道,它的沟道长度由这两次横向扩散的距离之差决定。为了增加击穿电压,在有源区和漏 区之间有一个漂移区。LDMOS中的漂移区是该类器件设计的关键,漂移区的杂质浓度比较低,因此,当LDMOS 接高压时,漂移区由于是高阻,能够承受更高的电压。图1所示LDMOS的多晶扩展到漂移区的场氧上面,充当场极板,会弱化漂移区的表面电场,有利于提高击 穿电压。场极板的作用大小与场极板的长度密切相关。要使场极板能充分发挥作用,一要设计好SiO2层的厚度,二要设计好场极板的长度。 LDMOS制造工艺结合了BPT和砷化镓工艺。与标准MOS工艺不同的是,在器件封装上,LDMOS没有采用BeO氧化铍隔离层,而是直接 硬接在衬底上,导热性能得到改善,提高了器件的耐高温性,大大延长了器件寿命。由于LDMOS管的负温效应,其漏电流在受热时自动均流,而不会象双极型管 的正温度效应在收集极电流局部形成热点,从而管子不易损坏。所以LDMOS管大大加强了负载失配和过激励的承受能力。同样由于LDMOS管的自动均流作 用,其输入-输出特性曲线在1dB 压缩点(大信号运用的饱和区段)下弯较缓,所以动态范围变宽,有利于模拟和数字电视射频信号放大。LDMOS在小信号放大时近似线性,几乎没有交调失真, 很大程度简化了校正电路。MOS器件的直流栅极电流几乎为零,偏置电路简单,无需复杂的带正温度补偿的有源低阻抗偏置电路。 对LDMOS而言,外延层的厚度、掺杂浓度、漂移区的长度是其最重要的特性参数。我们可以通过增加漂移区的长度以提高击穿电压,但是这会增加芯片面积和导通电阻。高压DMOS器 件耐压和导通电阻取决于外延层的浓度、厚度及漂移区长度的折中选择。因为耐压和导通阻抗对于外延层的浓度和厚度的要求是矛盾的。高的击穿电压要求厚的轻掺 杂外延层和长的漂移区,而低的导通电阻则要求薄的重掺杂外延层和短的漂移区,因此必须选择最佳外延参数和漂移区长度,以便在满足一定的源漏击穿电压的前提 下,得到最小的导通电阻。 LDMOS在以下方面具有出众的性能: 1.热稳定性;2.频率稳定性;3.更高的增益;4.提高的耐久性;5.更低的噪音;6.更低的反馈电容;7.更简单的偏流电路;8.恒定 的输入阻抗;9.更好的IMD性能;10.更低的热阻;11.更佳的AGC能力。LDMOS器件特别适用于CDMA、W-CDMA、TETRA、数字地面 电视等需要宽频率范围、高线性度和使用寿命要求高的应用。 卓越的效率,可降低功率消耗与冷却成本 卓越的线性度,可将信号预校正需求降到最低优化超低热阻抗,可缩减放大器尺寸与冷却需求并改善可靠度 卓越的尖峰功率能力,可带来最少数据错误率的高 3G 数据率高功率密度,使用较少的晶体管封装超低感抗、回授电容与串流闸阻抗,目前可让 LDMOS 晶体管在双载子器件上提供 7 bB 的增益改善直接源极接地,提升功率增益并免除 BeO 或 AIN 隔离物质的需求在 GHz 频率下拥有高功率增益,带来更少设计步骤、更简易更具成本效益的设计 (采用低成本、低功率驱动晶体管) 运作面 绝佳的稳定性,由于负汲极电流温度常数,所以不受热散失的影响比双载子更能忍受较高的负载未匹配现象 (VSWR),提高现场实际应用的可靠度卓越的射频稳定度,在闸极与汲极间内置隔离层,可以降低回授电容在平均无故障时间 (MTTF) 上有相当好的可靠度 1.LDMOS,即横向双扩散金属-氧化物-半导体, 一般N-LDMOS比较常见,是通过源的N+和下面的P-共同扩散来形成沟道的,由于沟道与正常的MOS管没什么区别,所以开启电压可以做到与普通MOS差不多, 另外,LDMOS一般用于高压功率电路,通过漂移区低的搀杂浓度来承受漏端高的电压; 2. LDMOS为什么可以承受高压: 因为漂移区低搀杂的存在,LDMOS大部分电压都会降落在此区域,从而保证沟道处电压较低,那么如何实现LDMOS的高压呢?最早提出的RESUF原理成功的实现了LDMOS的高压应用,即优化外延N-层浓度与衬底浓度,使二者接近,可以达到高压,但这个条件仅是必要条件,要实现高压,P-和外延N-界面的击穿也是一个薄弱环节,同时表面沟道尽头,场氧边缘都是电场集中的位置,为了使击穿发生在漏下边的N-与衬底结,RESUF原理要求在P-与N-外延层电场达到临界值之前,整个漂移区全部耗尽,这样就可以使表面电场强度得到最大程度的降低,从而实现高压应用,如700V-1200V, 当然,一个很重要的问题是, Rdson与漂移区搀杂浓度相反,为实现高压,一般漂移区浓度都比较低,这就极大的增加了Rdson, 为了降低开态电阻, 在漂移区表面增加P环的结构被发明出来,通过表面P-TOP,不但可以降低表面电场,还可以在保持击穿电压不变的情况下,增加漂移区约50%的搀杂,从而很大程度地降低了开态电阻,当然,具体浓度,尺寸,位置是存在优值的,需要模拟与实际流片相结合来获得最佳条件, 另外, P型中间层等其他降低开态电阻的结构也早有人提出,因为会增加工艺的复杂度和模拟的准确度,实际应用的不多; 除了有P-TOP的双RESURF原理以外,场板结构, 双层浮空场板结构都用于降低表面电场,提高击穿电压。 VDMOS 垂直双扩散金属-氧化物半导体场效应晶体管VDMOS兼有双极晶体管和普通MOS器件的优点,无论是开关应用还是线形应用,VDMOS都是理想的功率器件,VDMOS主要应用于电机调速、逆变器、不间断电源、电子开关、高保真音响、汽车电器和电子镇流器等。 特征: 接近无限大的静态输入阻抗特性,非常快的开关时间,导通电阻正温度系数,近似常数的跨导, 高dV/dt。 80年代以来,迅猛发展的超大规模集成电路威廉希尔官方网站 给高压大电流半导体注入了新的活力,一批新型的声控功放器件诞生了,其中最有代表性的产品就是VDMOS声效应功率晶体管。 这种电流垂直流动的双扩散MOS器件是电压控制型器件。在合适的栅极电压的控制下,半导体表面反型,形成导电沟道,于是漏极和源极之间流过适量的电流 VDMOS兼有双极晶体管和普通MOS器件的优点。与双极晶体管相比,它的开关速度,开关损耗小;输入阻抗高,驱动功率小;频率特性好;跨导高度线性。特别值得指明出的是,它具有负的温度系数,没有双极功率的二次穿问题,安全工作区大。因此,不论是开关应用还是线性应用,VDMOS都是理想的功率器件。 现在,VDMOS器件已广泛应用于各种领域,包括电机调速、逆变器、不间断电源、开关电源、电子开关、高保真音响、汽车电器和电子镇流器等。由于VDMOS的性能价格比已优于双极功率器件,它在功率器件市声中的份额已达42%。并将继续上升。 |
|
|
|
只有小组成员才能发言,加入小组>>
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-23 23:19 , Processed in 0.343542 second(s), Total 43, Slave 37 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号