完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
传统方式中,对大型仓库、博物馆等无人环境的数据采集费时费力、效率低下,且实时性差,随机性大。科学威廉希尔官方网站
的进步促进了自动检测系统的发展,而利用无线通信威廉希尔官方网站
实现对无人环境的监测更是未来电子威廉希尔官方网站
应用的发展趋势。造价低廉、使用方便的单片机在小型控制系统中获得了广泛的应用。凌阳公司推出的16位单片机SPCE061A处理速度快,独具语音识别的特色功能,是用作系统控制核心的理想选择;而传输速率高、成本低、功耗小的nRF24L01无线模块也是实现系统无线通信的最佳选择。
1 系统设计方案 系统分为主控端与监测端,通过无线模块进行数据通信,核心部分是需要对数据进行处理的主控端。主控端以SPCE061A单片机为控制核心,通过nRF24L01模块进行数据的收集,以12864液晶模块作为数据显示的平台。监测端采用8位的AT89S52单片机作为控制核心。使用DHT11数字温湿度传感器采集温湿度数据。监测端还设计有继电器电路,可以模拟在温度超过警戒值时自动打开 房间空调制冷。图1为系统整体框架图。 图1 系统整体框架图 2 硬件电路设计 2.1 微处理模块设计 主控端微处理器选用凌阳公司推出的SPCE061A单片机。SPCE061A是一款16位的微处理器,运算速度快,非常适合处理复杂的数字信号。CPU工作电压VDD 为 2.4~3.6V,CPU 时钟频率范围为0.32~49.152MHz,内置2K字SRAM以及32K字FLASH;具有2 个 16 位可编程定时器/计数器(可自动预置初始计数值);2个10位DAC(数/模转换)输出通道;32 位通用可编程输入/输出端口;具备触键唤醒的功能;7通道10位电压模/数转换器(ADC)和单通道声音模/数转换器;声音模/数转换器输入通道内置麦克风放大器和自动增益控制(AGC)功能;具备串行设备接口;具有低电压复位(LVR)功能和低电压监测(LVD)功能;内置在线仿真电路ICE(In-Circuit Emulator)接口;具有保密功能;具有看门狗功能。图2为SPCE061A内部结构图;图3为SPCE061A引脚图。 图2 SPCE061A内部结构图 图3 SPCE061A引脚图 监测端微处理器选用ATMEL公司的AT89S52单片机。AT89S52是一种低功耗、高性能的8位CMOS微控制器,具有8K 在系统可编程Flash 存储器,256字节RAM, 32 位I/O 口线,片内晶振及时钟电路,最高工作频率可达33MHZ;内部集成看门狗定时器,全双工UART串行口,6个中断源,3个16位定时器/计数器。图4为AT89S52单片机引脚及其最小系统图。 图4 AT89S52单片机引脚及其最小系统 2.2 温湿度模块 DHT11数字温湿度传感器,是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集威廉希尔官方网站 和温湿度传感威廉希尔官方网站 ,具有很高的可靠性与稳定性。图5为DHT11应用电路。 图5 DHT11应用电路 DHT11采用单总线传输方式,供电电压为3V~5.5V。传感器上电后,要等待 1s 以越过不稳定状态。电源引脚(VDD,GND)之间可增加一个100nF 的电容,用以去耦滤波。 DATA引脚用于微处理器与 DHT11之间的通讯和同步,采用单总线数据格式,一次通讯时间4ms左右,数据分小数部分和整数部分,当前小数部分用于以后扩展,现在读出均为零。本设计中将DHT11的DATA引脚连接AT89S52的P1.0脚。一次完整的数据传输为40bit,高位先出。数据格式:8bit湿度整数数据+8bit湿度小数数据+8bi温度整数数据+8bit温度小数数据+8bit校验和。数据传送正确时校验和数据等于8bit湿度整数数据+8bit湿度小数数据+8bi温度整数数据+8bit温度小数数据所得结果的末8位。 2.3 无线模块 nRF24L01是一款工作在2.4~2.5 GHz世界通用ISM频段的单片无线收发器芯片,采用FSK调制,内部集成自己的协议,有自动应答、自动重发、地址及CRC检验功能,可实现点对点或1对6的无线通信,无线通信速度可达2 Mbps;电流消耗极低,当工作在发射模式下发射功率为-6 dBm时电流消耗为9 mA,接收模式下为12.3 mA。 nRF24L01有四种工作模式:收发模式、配置模式、空闲模式、关机模式。工作模式由PWR_UP register 、PRIM_RX register和CE决定。本设计中让NRF24L01工作于收发模式中的Enhanced ShockBurstTM收发模式下,这种工作模式下,系统的程序编制会更加简单,并且稳定性也会更高。 nRF24L01的所有配置工作都是通过SPI完成,共有30字节的配置字。 虽然nRF24L01模块工作于1.9~3.6V的低电压,但考虑到SPCE061A单片机及51单片机的IO口输出电流均较小,nRF24L01无线模块可以直接与其连接。图6为nRF24L01芯片及其外围电路。图7为nRF24L01与AT89S52引脚连接图。图8为nRF24L01与SPCE061A引脚连接图。 图6 nRF24L01芯片及其外围电路 图7 nRF24L01与AT89S52引脚连接图 图8 nRF24L01与SPCE061A引脚连接图 2.4 显示模块 系统显示模块采用带中文字库的12864液晶显示屏。12864主要由行驱动器/列驱动器及128x64全点阵液晶显示器组成。其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII字符集。该模块接口方式灵活,操作指令简单、方便,可以显示8×4行16×16点阵的汉字,也可完成图形显示,可构成全中文人机交互图形界面。低电压低功耗也是其又一显著特点。12864具有简单而功能较强的指令集,可实现字符移动、闪烁等显示功能,共有7条指令,单片机只需通过D/I、R/W、DB0~DB7送入数据或者指令便可显示其指定内容或显示方式。 本设计中,12864液晶屏采用并行通信方式与SPCE061A单片机进行数据通信。为了方便的操作12864液晶屏,我们将12864的4、5、6引脚与SPCE061A的IOB9、IOB8、IOB10引脚连接,并编写了能够直接操作SPCE061A单个IO口状态的函数,以方便操作12864显示屏而不影响其它IO口的数据通信。图9为12864液晶屏与SPCE061A的引脚连接图。 图9 12864液晶屏与SPCE061A的引脚连接图 2.5 键盘模块 SPCE061A开发板自身集成了三个按键K1、K2、K3,按键一端连接单片机的高电平,另一端分别连接了SPCE061A单片机的IOA0、IOA1、IOA2口。图10为SPCE061A开发板集成的三个按键电路图。其中按K1键进入调整报警温度模式,按K2键与K3键调整报警温度的上下限值。 图10 SPCE061A开发板按键电路图 2.6 继电器模块 当检测端检测到温度高于警戒值时,AT89S52单片机P1.1引脚输出高电平,通过继电器实现弱电控制强电,打开制冷空调,当温度低于警戒值时,AT89S52单片机P1.1引脚输出低电平,控制制冷空调停止运行。实现自动控制时要先把开关S1闭合,本系统将警戒值设置为35℃。图11为继电器自动控制电路图。 图11 继电器自动控制电路图 2.7 语音模块 凌阳的 SPCE061A 是 16 位单片机,具有很强的信息处理能力,最高时钟频率可达到 49MHz,具备运算速度高的优势,这些无疑为语音的播放、录放、合成及辨识提供了条件。 凌阳压缩算法中 SACM_A2000、SACM_S480 、SACM_S240 主要是用来放音,可用于语音提示,而 DVR 则用来录放音。SPCE061A单片机提供了相关API函数及程序代码范例,方便用C语言进行开发。本系统在编写软件时定义了SPCE061A相关寄存器的地址,通过调用相关定义即可方便进行操作。 软件设计时采用S480压缩算法将报警语音“有危险”进行压缩,用S480自动方式播放报警语音。该压缩算法压缩比为80:3,存储容量大,音质介于 A2000 和 S240 之间,适用于语音播放。图12为S480自动播放方式流程图 图12 S480自动播放方式流程图 3 系统软件设计流程 系统上电后,主控端软件初始化相关IO口,并初始化NRF24L01无线收发模块为接收模式,调用LCD字库初始化程序。希捷软件进入循环状态,读取RF24L01无线收发模块状态寄存器,判断是否接收到数据。如果接收到数据,将数据存储到预先定义的数组中,调用语音报警子函数,判断接收到的数据是否达到报警上下限,达到后液晶屏显示危险状态,并启用语音报警。没有危险时则只通过液晶屏显示当前温湿度数据及状态安全。 主控端软件执行完语音报警子函数后清除NRF24L01无线收发模块状态寄存器中断标志,清看门狗。判断报警温度调整键是否被按下,如果按下则调用报警温度调整子函数,调整完毕后进入循环模式,重复执行以上步骤。 监测端软件开始初始化相关IO口,并设置NRF24L01无线收发模块为发射模式,然后进入循环状态,开始调用温湿度采集子函数。采集完数据后,程序将数据放入NRF24L01无线收发模块的发射数据缓存器中。此时要检测温度数据是否超过设定的警戒值,如果超过警戒值则开启继电器,否则关闭继电器。下一步软件启动数据发射。发射完成后,读NRF24L01无线收发模块的状态寄存器并清除相关中断标志位,延时一段时间后再次进入循环采集发射状态,重复执行以上步骤。图13为主控端软件流程图,图14为监测端软件流程图。 3.1 主控端软件设计 3.1.1 主程序设计 void main() { Initial_IO(); //初始化IO口 flag=0; //调温子程序标志位清0 nRF24L01_Initial(); // NRF24L01初始化 RX_Mode(); //设置NRF24L01为接收模式并开始接收数据 initinal(); //调用LCD字库初始化程序 while(1) { sta=SPI_Read(STATUS); // 读取状态寄存器的值 if(RX_DR) // 如果接收到数据开启接收数据中断 { SPI_RW_Reg(WRITE_REG+STATUS,sta); //清除中断标志位 SPI_Read_Buf(RD_RX_PLOAD,Rx_Buffer,TX_PLOAD_WIDTH); //从接收数据缓存器读取接收到的数据 baojing(); //调用显示及报警子程序 *P_Watchdog_Clear=0x0001; //清除看门狗 } SPI_RW_Reg(WRITE_REG+STATUS,sta); //清除中断标志位 *P_Watchdog_Clear=0x0001; //清除看门狗 if((*P_IOA_Data&0x0007)==0x0001) //如果调温按键被按下 { flag=1; //标志位置1 tiaowendu(); //调用调温子程序 } delayms(10); //延时一段时间 } } 3.1.2 nRF24L01收发数据子程序 以下程序设置NRF24L01无线收发模块的工作方式,并开启数据接收 void RX_Mode(void) { CE_Low; //CE=0; delay1us(1); SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); SPI_Write_Buf(WRITE_REG + RX_ADDR_P1, TX_ADDRESS, TX_ADR_WIDTH); SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); //开启自动应答 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); SPI_RW_Reg(WRITE_REG + RF_CH, 40); // 选择无线频道40 SPI_RW_Reg(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH); SPI_RW_Reg(WRITE_REG + RX_PW_P1, TX_PLOAD_WIDTH); SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // 设置为数据接收模式,开启CRC检测等 CE_High; //CE = 1 设置CE引脚为高来开启模块的数据接收模式 delay1us(1); } 3.1.3 12864液晶屏显示子程序 void lcd_mesg(unsigned char *adder1) //写满整屏! { unsigned char i; TransferData(0x80,0); //设置图形显示存储器的地址 delay(100); for(i=0;i《32;i++) { TransferData(*adder1,1); adder1++; } TransferData(0x90,0); //设置图形显示存储器的地址 delay(100); for(i=32;i《64;i++) { TransferData(*adder1,1); adder1++; } } void lcd_mesg1(unsigned char w_dizhi,unsigned char changdu,unsigned char *adder1) //在任意位置写入要显示的任意长度的数据 { unsigned char i; TransferData(w_dizhi,0); //设置图形显示存储器的地址 delay(100); for(i=0;i { TransferData(*adder1,1); adder1++; } } 3.1.4 报警温度调整子程序 通过设置标志位,判断K1键被按下的次数。如果是第一次被按下,则可以通过K2、K3键调整报警温度上限;如果是第二次被按下,则可以通过K2、K3键调整报警温度下限;如果是第三次被按下,则调出报警温度调整子程序。 3.1.5 报警子程序 如果温度报警界限,主控端会在12864液晶屏上显示危险的字样,并进行“有危险”的语音提示。 SPCE061A以S480自动方式播放语音的程序如下: void PlaySnd_Auto(unsigned int uiSndIndex,unsigned int uiDAC_Channel) { SACM_S480_Initial(1); //初始化为自动播放方式 SACM_S480_Play(uiSndIndex,uiDAC_Channel,3); //播放 while((SACM_S480_Status() & 0x0001) != 0) { //判断播放状态,如还在播放则继续循环 SACM_S480_ServiceLoop(); //播放系统服务程序 *P_Watchdog_Clear=0x0001; } SACM_S480_Stop(); //停止播放 } 3.2 监测端软件设计 3.2.1 监测端主程序 void main(void) { init_io(); // 初始化IO口 TX_Mode(); // 设置NRF24L01无线收发模块为发射方式 while(1) { RH(); //采集温湿度数据 delay2(100); relay(); //控制继电器的状态 tx_buf[0]=str[0]; // 将检测到的数据保存到tx_buf[0] tx_buf[1]=str[1]; // 将检测到的数据保存到tx_buf[1] tx_buf[2]=str[2]; // 将检测到的数据保存到tx_buf[2] tx_buf[3]=str[3]; // 将检测到的数据保存到tx_buf[3] TX_Mode(); //设置NRF24L01无线收发模块为发射方式并开始发射 sta=SPI_Read(STATUS); // 调取状态寄存器的数值 SPI_RW_Reg(WRITE_REG+STATUS,sta); // 清除状态寄存器的中断标志位 delay_ms(1000); } } 3.2.2 Nrf24L01收发数据子程序 void TX_Mode(void) { CE=0; SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH); / SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0x1a); SPI_RW_Reg(WRITE_REG + RF_CH, 40); SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); CE=1; } 3.2.3 温湿度检测子程序 void RH(void) { dht_data=0; delay1(20); //主机拉低18ms dht_data=1; delay2(2); //总线由上拉电阻拉高 主机延时20us dht_data=1; //主机设为输入 判断从机响应信号 if(!dht_data) //判断从机是否有低电平响应信号 如不响应则跳出,响应则向下运行 { U8FLAG=2; while((!dht_data)&&U8FLAG++); //判断从机是否发出 80us 的低电平响应信号是否结束 U8FLAG=2; while((dht_data)&&U8FLAG++); COM(); //开始进入数据接收状态 U8RH_data_H_temp=U8comdata; COM(); U8RH_data_L_temp=U8comdata; COM(); U8T_data_H_temp=U8comdata; COM(); U8T_data_L_temp=U8comdata; COM(); U8checkdata_temp=U8comdata; dht_data=1; //拉高为下一轮做好准备 U8temp=(U8T_data_H_temp+U8T_data_L_temp+U8RH_data_H_temp+U8RH_data_L_temp); //进行数据校验 if(U8temp==U8checkdata_temp) { U8RH_data_H=U8RH_data_H_temp; U8RH_data_L=U8RH_data_L_temp; U8T_data_H=U8T_data_H_temp; U8T_data_L=U8T_data_L_temp; U8checkdata=U8checkdata_temp; str[0]=(U8T_data_H_temp/10)+0x30; str[1]=(U8T_data_H_temp%10)+0x30; str[2]=(U8RH_data_H_temp/10)+0x30; str[3]=(U8RH_data_H_temp%10)+0x30; } } } 3.2.4 继电器控制子程序 void relay() { if(str[0]》0x03) relay_sta=0x01; //打开继电器 else if(str[0]==0x03) { if(str[1]》0x05) relay_sta=0x01; //打开继电器 else relay_sta=0x00; //关闭继电器 } else relay_sta=0x00; //关闭继电器 } 4 系统运行测试 按照以上方案设计出整个系统后上电运行,系统工作状态良好,能够满足生产生活中的要求,图15为系统整体运行情况,图16与图17为调整报警温度界面与系统报警界面。 5 结语 本系统使用处理速度快的16位单片机SPCE061A作为主控端核心,利用nRF24L01无线模块,设计完成了能够监控小型无人环境温湿度的人性化系统。经过测试,系统温湿度数据采集准确,nRF24L01模块传送数据稳定;当环境温度达到警戒值时,继电器闭合,可以模拟开启制冷空调的动作。本系统达到了预期设计目的,具有很高的实用价值。 |
|
|
|
只有小组成员才能发言,加入小组>>
如何使用STM32+nrf24l01架构把有线USB设备无线化?
2595 浏览 7 评论
请问能利用51单片机和nRF24L01模块实现实时语音无线传输吗?
2412 浏览 5 评论
3270 浏览 3 评论
2869 浏览 8 评论
为什么ucosii上移植lwip后系统进入了HardFault_Handler?
2820 浏览 4 评论
请教各位大咖:有没有接收频率32M左右的芯片推荐的?先感谢啦!
712浏览 1评论
942浏览 0评论
1078浏览 0评论
711浏览 0评论
538浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-25 02:40 , Processed in 1.102240 second(s), Total 76, Slave 60 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号